IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i21p8983-d436774.html
   My bibliography  Save this article

Sustainability of Underground Hydro-Technologies: From Ancient to Modern Times and toward the Future

Author

Listed:
  • Mohammad Valipour

    (Department of Civil and Environmental Engineering and Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA
    Center of Excellence for Climate Change Research/Department of Meteorology, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Abdelkader T. Ahmed

    (Civil Engineering Department, Faculty of Engineering, Aswan University, Aswan, Egypt
    Civil Engineering Department, Faculty of Engineering, Islamic University of Medina, Medina, Saudi Arabia)

  • Georgios P. Antoniou

    (Department of Architecture Engineering, National Technical University of Athens, 11474 Athens, Greece)

  • Renato Sala

    (Laboratory of Geoarchaeology, Faculty of History, Archaeology and Ethnology, Kazakh National University, Almaty, Kazakhstan)

  • Mario Parise

    (Department of Earth and Environmental Sciences, University Aldo Moro, 70125 Bari, Italy)

  • Miquel Salgot

    (Environmental Health and Soil Science Unit, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain)

  • Negar Sanaan Bensi

    (Architecture Department, Technical University of Delft, 2600 Delft, The Netherlands)

  • Andreas N. Angelakis

    (HAO-Demeter, Agricultural Research Institution of Crete, 71300 Iraklion and Union of Water Supply and Sewerage Enterprises, 41222 Larissa, Greece)

Abstract

An underground aqueduct is usually a canal built in the subsurface to transfer water from a starting point to a distant location. Systems of underground aqueducts have been applied by ancient civilizations to manage different aspects of water supply. This research reviews underground aqueducts from the prehistoric period to modern times to assess the potential of achieving sustainable development of water distribution in the sectors of agriculture and urban management, and provides valuable insights into various types of ancient underground systems and tunnels. The review illustrates how these old structures are a testament of ancient people’s ability to manage water resources using sustainable tools such as aqueducts, where the functionality works by using, besides gravity, only “natural” engineering tools like inverted siphons. The study sheds new light on human’s capability to collect and use water in the past. In addition, it critically analyzes numerous examples of ancient/historic/pre-industrial underground water supply systems that appear to have remained sustainable up until recent times. The sustainability of several underground structures is examined, correlated to their sound construction and regular maintenance. Moreover, several lessons can be learned from the analysis of ancient hydraulic works, particularly now, as many periodically hydrologic crises have occurred recently, overwhelmingly impacted by climate change and/or over-exploitation and degradation of available water resources.

Suggested Citation

  • Mohammad Valipour & Abdelkader T. Ahmed & Georgios P. Antoniou & Renato Sala & Mario Parise & Miquel Salgot & Negar Sanaan Bensi & Andreas N. Angelakis, 2020. "Sustainability of Underground Hydro-Technologies: From Ancient to Modern Times and toward the Future," Sustainability, MDPI, vol. 12(21), pages 1-31, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8983-:d:436774
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/21/8983/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/21/8983/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alkaff, Saqaff A. & Sim, S.C. & Ervina Efzan, M.N., 2016. "A review of underground building towards thermal energy efficiency and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 692-713.
    2. EDMUND B. Pike, 1999. "Drinking water supply – a backward look into the future," Environment Systems and Decisions, Springer, vol. 19(1), pages 5-9, March.
    3. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    4. Balooni, Kulbhushan & Kalro, A.H. & Kamalamma, Ambili G., 2010. "Sustainability of tunnel wells in a changing agrarian context: A case study from South India," Agricultural Water Management, Elsevier, vol. 97(5), pages 659-665, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert J. DiNapoli & Carl P. Lipo & Terry L. Hunt, 2021. "Triumph of the Commons: Sustainable Community Practices on Rapa Nui (Easter Island)," Sustainability, MDPI, vol. 13(21), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyed Morteza Hatefi & Jolanta Tamošaitienė, 2018. "Construction Projects Assessment Based on the Sustainable Development Criteria by an Integrated Fuzzy AHP and Improved GRA Model," Sustainability, MDPI, vol. 10(4), pages 1-14, March.
    2. Goudarzi, Hossein & Mostafaeipour, Ali, 2017. "Energy saving evaluation of passive systems for residential buildings in hot and dry regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 432-446.
    3. Cristina Baglivo & Paolo Maria Congedo & Delia D’Agostino, 2018. "Multi-Objective Analysis for the Optimization of a High Performance Slab-on- Ground Floor in a Warm Climate," Energies, MDPI, vol. 11(11), pages 1-28, November.
    4. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    5. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    6. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    7. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    8. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    9. Obsatar Sinaga & Mohd Haizam Mohd Saudi & Djoko Roespinoedji & Mohd Shahril Ahmad Razimi, 2019. "The Dynamic Relationship between Natural Gas and Economic Growth: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 388-394.
    10. Asongu, Simplice A. & Odhiambo, Nicholas M., 2021. "Inequality, finance and renewable energy consumption in Sub-Saharan Africa," Renewable Energy, Elsevier, vol. 165(P1), pages 678-688.
    11. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    12. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    13. Wan-Lin Yong & Jerome Kueh & Yong Sze Wei & Jang-Haw Tiang, 2020. "Energy Consumption and Economic Growth Nexus in China: Autoregressive Distributed Lag (ARDL)," Journal of Public Administration and Governance, Macrothink Institute, vol. 10(2), pages 194212-1942, December.
    14. Ruqayya Ibraheem & Ismat Nasim, 2021. "Globalization, Energy Use and Environmental Degradation in Thailand," iRASD Journal of Energy and Environment, International Research Association for Sustainable Development (iRASD), vol. 2(1), pages 01-11, June.
    15. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    16. Sadeq Hooshmand Zaferani & Mehdi Jafarian & Daryoosh Vashaee & Reza Ghomashchi, 2021. "Thermal Management Systems and Waste Heat Recycling by Thermoelectric Generators—An Overview," Energies, MDPI, vol. 14(18), pages 1-21, September.
    17. Setterberg, Hanna & Sjöström, Emma, 2021. "Action Lab: Integrated Communications on Financial and ESG Performance in the Earnings Call," Misum Working Paper Series 2021-1, Stockholm School of Economics, Mistra Center for Sustainable Markets (Misum).
    18. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    19. Muhammad Shahbaz & Syed Jawad Hussain Shahzad & Mantu Kumar Mahalik & Perry Sadorsky, 2018. "How strong is the causal relationship between globalization and energy consumption in developed economies? A country-specific time-series and panel analysis," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1479-1494, March.
    20. Anandkumar Balasubramaniam & Anand Paul & Won-Hwa Hong & HyunCheol Seo & Jeong Hong Kim, 2017. "Comparative Analysis of Intelligent Transportation Systems for Sustainable Environment in Smart Cities," Sustainability, MDPI, vol. 9(7), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8983-:d:436774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.