IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i21p8833-d434051.html
   My bibliography  Save this article

Multi-Objective Optimization Model for P + R and K + R Facilities’ Collaborative Layout Decision

Author

Listed:
  • Wei Wang

    (School of Transportation, Southeast University, Nanjing 211189, China)

  • Zhentian Sun

    (Research Institute of Highway, Ministry of Transport, Beijing 100088, China)

  • Zhiyuan Wang

    (School of Transportation, Southeast University, Nanjing 211189, China)

  • Yue Liu

    (School of Transportation, Southeast University, Nanjing 211189, China)

  • Jun Chen

    (School of Transportation, Southeast University, Nanjing 211189, China)

Abstract

In order to reduce the pressure on urban road traffic, multi-modal travel is gradually replacing single-modal travel. Park and ride (P + R) and kiss and ride (K + R) are effective methods to integrate car transportation and rail transit. However, there is often an imbalance between supply and demand in existing car occupant transfer facilities, which include both P + R and K + R facilities. Therefore, we aim to conduct a research on P + R and K + R facilities’ collaborative decision. It first classifies car occupant transfer facilities into types and levels and sets the service capacity of each category. On the premise of ensuring the occupancy of parking spaces, our model aims to maximize the intercepted vehicle mileage and transfer utility and establishes an optimal decision model for car occupant transfer facilities. The model collaboratively decides the facilities in terms of location selection, layout arrangement, and overflow demand conversion to balance the supply and demand. We choose Chengdu as an example, apply the multi-objective optimization model of car occupant transfer facilities, give improved schemes, and further explore the influence of the quantity of facilities on the optimization objectives. The results show that the scheme obtained by the proposed model is significantly better than the existing scheme.

Suggested Citation

  • Wei Wang & Zhentian Sun & Zhiyuan Wang & Yue Liu & Jun Chen, 2020. "Multi-Objective Optimization Model for P + R and K + R Facilities’ Collaborative Layout Decision," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8833-:d:434051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/21/8833/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/21/8833/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weiss, Adam & Habib, Khandker Nurul, 2017. "Examining the difference between park and ride and kiss and ride station choices using a spatially weighted error correlation (SWEC) discrete choice model," Journal of Transport Geography, Elsevier, vol. 59(C), pages 111-119.
    2. Norlida Hamid, 2009. "Utilization patterns of park and ride facilities among Kuala Lumpur commuters," Transportation, Springer, vol. 36(3), pages 295-307, May.
    3. Horner, Mark W. & Groves, Sara, 2007. "Network flow-based strategies for identifying rail park-and-ride facility locations," Socio-Economic Planning Sciences, Elsevier, vol. 41(3), pages 255-268, September.
    4. Wang, Judith Y. T. & Yang, Hai & Lindsey, Robin, 2004. "Locating and pricing park-and-ride facilities in a linear monocentric city with deterministic mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 38(8), pages 709-731, September.
    5. Jian Wang & Libing Chi & Xiaowei Hu & Hongfei Zhou, 2014. "Urban Traffic Congestion Pricing Model with the Consideration of Carbon Emissions Cost," Sustainability, MDPI, vol. 6(2), pages 1-16, February.
    6. Pengjun Zhao & Ralph Chapman & Edward Randal & Philippa Howden-Chapman, 2013. "Understanding Resilient Urban Futures: A Systemic Modelling Approach," Sustainability, MDPI, vol. 5(7), pages 1-22, July.
    7. Clayton, William & Ben-Elia, Eran & Parkhurst, Graham & Ricci, Miriam, 2014. "Where to park? A behavioural comparison of bus Park and Ride and city centre car park usage in Bath, UK," Journal of Transport Geography, Elsevier, vol. 36(C), pages 124-133.
    8. Dorina Pojani & Dominic Stead, 2015. "Sustainable Urban Transport in the Developing World: Beyond Megacities," Sustainability, MDPI, vol. 7(6), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elżbieta Macioszek & Agata Kurek, 2020. "The Use of a Park and Ride System—A Case Study Based on the City of Cracow (Poland)," Energies, MDPI, vol. 13(13), pages 1-26, July.
    2. Xinyuan Chen & Ruyang Yin & Qinhe An & Yuan Zhang, 2021. "Modeling a Distance-Based Preferential Fare Scheme for Park-and-Ride Services in a Multimodal Transport Network," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    3. Duncan, Michael & Christensen, Robert K., 2013. "An analysis of park-and-ride provision at light rail stations across the US," Transport Policy, Elsevier, vol. 25(C), pages 148-157.
    4. Amir Khakbaz & Ali Nookabadi & S. Shetab-bushehri, 2013. "A Model for Locating Park-and-Ride Facilities on Urban Networks Based on Maximizing Flow Capture: A Case Study of Isfahan, Iran," Networks and Spatial Economics, Springer, vol. 13(1), pages 43-66, March.
    5. Yusuke Kono & Kenetsu Uchida & Katia Andrade, 2014. "Economical welfare maximisation analysis: assessing the use of existing Park-and-Ride services," Transportation, Springer, vol. 41(4), pages 839-854, July.
    6. Ahmad Nazrul Hakimi Ibrahim & Muhamad Nazri Borhan & Riza Atiq O.K. Rahmat, 2020. "Understanding Users’ Intention to Use Park-and-Ride Facilities in Malaysia: The Role of Trust as a Novel Construct in the Theory of Planned Behaviour," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    7. Shahriar Afandizadeh & Seyed Ebrahim Abdolmanafi, 2016. "Development of a Model for a Cordon Pricing Scheme Considering Environmental Equity: A Case Study of Tehran," Sustainability, MDPI, vol. 8(2), pages 1-19, February.
    8. Du, Bo & Wang, David Z.W., 2014. "Continuum modeling of park-and-ride services considering travel time reliability and heterogeneous commuters – A linear complementarity system approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 58-81.
    9. Hayakawa, Keiichiro & Chikaraishi, Makoto, 2023. "Modeling the impact of e-hailing services on regional public transit considering transit-dependent people," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 91-118.
    10. Karamychev, Vladimir & van Reeven, Peran, 2011. "Park-and-ride: Good for the city, good for the region?," Regional Science and Urban Economics, Elsevier, vol. 41(5), pages 455-464, September.
    11. Holguı´n-Veras, José & Yushimito, Wilfredo F. & Aros-Vera, Felipe & Reilly, John (Jack), 2012. "User rationality and optimal park-and-ride location under potential demand maximization," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 949-970.
    12. Zhao, Hui & Yan, Xuedong & Gao, Ziyou, 2013. "Transportation serviceability analysis for metropolitan commuting corridors based on modal choice modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 270-284.
    13. Lu, Qing-Long & Qurashi, Moeid & Antoniou, Constantinos, 2023. "Simulation-based policy analysis: The case of urban speed limits," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    14. David Staš & Radim Lenort & Pavel Wicher & David Holman, 2015. "Green Transport Balanced Scorecard Model with Analytic Network Process Support," Sustainability, MDPI, vol. 7(11), pages 1-19, November.
    15. Majumder, Suman & De, Krishnarti & Kumar, Praveen & Sengupta, Bodhisattva & Biswas, Pabitra Kumar, 2021. "Techno-commercial analysis of sustainable E-bus-based public transit systems: An Indian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Jairo Ortega & János Tóth & Tamás Péter & Sarbast Moslem, 2020. "An Integrated Model of Park-And-Ride Facilities for Sustainable Urban Mobility," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    17. Zhang, Jie & Wang, David Z.W. & Meng, Meng, 2018. "Which service is better on a linear travel corridor: Park & ride or on-demand public bus?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 803-818.
    18. Xu, Shu-Xian & Liu, Tian-Liang & Huang, Hai-Jun & Liu, Ronghui, 2018. "Mode choice and railway subsidy in a congested monocentric city with endogenous population distribution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 413-433.
    19. Bayissa Badada Badassa & Baiqing Sun & Lixin Qiao, 2020. "Sustainable Transport Infrastructure and Economic Returns: A Bibliometric and Visualization Analysis," Sustainability, MDPI, vol. 12(5), pages 1-24, March.
    20. Ali Enes Dingil & Federico Rupi & Domokos Esztergár-Kiss, 2021. "An Integrative Review of Socio-Technical Factors Influencing Travel Decision-Making and Urban Transport Performance," Sustainability, MDPI, vol. 13(18), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8833-:d:434051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.