IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7793-d416794.html
   My bibliography  Save this article

Multi-Objective Optimization of an Integrated Algal and Sludge-Based Bioenergy Park and Wastewater Treatment System

Author

Listed:
  • Jayne Lois San Juan

    (Industrial Engineering Department, De La Salle University, Manila 0922, Philippines
    Center for Engineering and Sustainable Development Research, De La Salle University, Manila 0922, Philippines)

  • Carlo James Caligan

    (Industrial Engineering Department, De La Salle University, Manila 0922, Philippines)

  • Maria Mikayla Garcia

    (Industrial Engineering Department, De La Salle University, Manila 0922, Philippines)

  • Jericho Mitra

    (Industrial Engineering Department, De La Salle University, Manila 0922, Philippines)

  • Andres Philip Mayol

    (Center for Engineering and Sustainable Development Research, De La Salle University, Manila 0922, Philippines
    Mechanical Engineering Department, De La Salle University, Manila 0922, Philippines)

  • Charlle Sy

    (Industrial Engineering Department, De La Salle University, Manila 0922, Philippines
    Center for Engineering and Sustainable Development Research, De La Salle University, Manila 0922, Philippines)

  • Aristotle Ubando

    (Center for Engineering and Sustainable Development Research, De La Salle University, Manila 0922, Philippines
    Mechanical Engineering Department, De La Salle University, Manila 0922, Philippines)

  • Alvin Culaba

    (Center for Engineering and Sustainable Development Research, De La Salle University, Manila 0922, Philippines
    Mechanical Engineering Department, De La Salle University, Manila 0922, Philippines)

Abstract

Given increasing energy demand and global warming potential, the advancements in bioenergy production have become a key factor in combating these issues. Biorefineries have been effective in converting biomass into energy and valuable products with the added benefits of treating wastewater used as a cultivation medium. Recent developments enable relationships between sewage sludge and microalgae that could lead to higher biomass and energy yields. This study proposes a multi-objective optimization model that would assist stakeholders in designing an integrated system consisting of wastewater treatment systems, an algal-based bioenergy park, and a sludge-based bioenergy park that would decide which processes to use in treating wastewater and sludge while minimizing cost and carbon emissions. The baseline run of the model showed that the three plants were utilized in treating both sludge and water for the optimal answer. Running the model with no storage prioritizes water disposal, while having storage can help produce more energy. Sensitivity analysis was performed on storage costs and demand. Results show that decreasing the demand is directly proportional to the total costs while increasing it can help reduce expected costs through storage and utilizing process capacities. Costs of storage do not cause a huge overall difference in costs and directly follow the change.

Suggested Citation

  • Jayne Lois San Juan & Carlo James Caligan & Maria Mikayla Garcia & Jericho Mitra & Andres Philip Mayol & Charlle Sy & Aristotle Ubando & Alvin Culaba, 2020. "Multi-Objective Optimization of an Integrated Algal and Sludge-Based Bioenergy Park and Wastewater Treatment System," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7793-:d:416794
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7793/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7793/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cao, Yucheng & Pawłowski, Artur, 2012. "Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1657-1665.
    2. García Prieto, Carla V. & Ramos, Fernando D. & Estrada, Vanina & Villar, Marcelo A. & Diaz, M. Soledad, 2017. "Optimization of an integrated algae-based biorefinery for the production of biodiesel, astaxanthin and PHB," Energy, Elsevier, vol. 139(C), pages 1159-1172.
    3. Michael Francis D. Benjamin & Aristotle T. Ubando & Luis F. Razon & Raymond R. Tan, 2015. "Analyzing the disruption resilience of bioenergy parks using dynamic inoperability input–output modeling," Environment Systems and Decisions, Springer, vol. 35(3), pages 351-362, September.
    4. Butturi, M.A. & Lolli, F. & Sellitto, M.A. & Balugani, E. & Gamberini, R. & Rimini, B., 2019. "Renewable energy in eco-industrial parks and urban-industrial symbiosis: A literature review and a conceptual synthesis," Applied Energy, Elsevier, vol. 255(C).
    5. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Julia Tsai & Victoria Chen & M. Beck & Jining Chen, 2004. "Stochastic Dynamic Programming Formulation for a Wastewater Treatment Decision-Making Framework," Annals of Operations Research, Springer, vol. 132(1), pages 207-221, November.
    7. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    8. Chen, Yi-di & Li, Suping & Ho, Shih-Hsin & Wang, Chengyu & Lin, Yen-Chang & Nagarajan, Dillirani & Chang, Jo-Shu & Ren, Nan-qi, 2018. "Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 76-90.
    9. Lam, Chor Man & Hsu, Shu-Chien & Alvarado, Valeria & Li, Wing Man, 2020. "Integrated life-cycle data envelopment analysis for techno-environmental performance evaluation on sludge-to-energy systems," Applied Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irena Tušer & Alena Oulehlová, 2021. "Risk Assessment and Sustainability of Wastewater Treatment Plant Operation," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    2. Leticia Gallego-Valero & Encarnación Moral-Parajes & Isabel María Román-Sánchez, 2021. "Wastewater Treatment Costs: A Research Overview through Bibliometric Analysis," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
    3. Celine Marie A. Solis & Jayne Lois G. San Juan & Andres Philip Mayol & Charlle L. Sy & Aristotle T. Ubando & Alvin B. Culaba, 2021. "A Multi-Objective Life Cycle Optimization Model of an Integrated Algal Biorefinery toward a Sustainable Circular Bioeconomy Considering Resource Recirculation," Energies, MDPI, vol. 14(5), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    3. Sibi G, 2018. "Bioenergy Production from Wastes by Microalgae as Sustainable Approach for Waste Management and to Reduce Resources Depletion," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 13(3), pages 77-80, July.
    4. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    5. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Fabio Merzari & Jillian Goldfarb & Gianni Andreottola & Tanja Mimmo & Maurizio Volpe & Luca Fiori, 2020. "Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties," Energies, MDPI, vol. 13(11), pages 1-22, June.
    8. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    9. Xingyun Yan & Lingyu Wang & Mingzhu Fang & Jie Hu, 2022. "How Can Industrial Parks Achieve Carbon Neutrality? Literature Review and Research Prospect Based on the CiteSpace Knowledge Map," Sustainability, MDPI, vol. 15(1), pages 1-29, December.
    10. Katinas, Vladislovas & Marčiukaitis, Mantas & Perednis, Eugenijus & Dzenajavičienė, Eugenija Farida, 2019. "Analysis of biodegradable waste use for energy generation in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 559-567.
    11. Abdel daiem, Mahmoud M. & Hatata, Ahmed & Galal, Osama H. & Said, Noha & Ahmed, Dalia, 2021. "Prediction of biogas production from anaerobic co-digestion of waste activated sludge and wheat straw using two-dimensional mathematical models and an artificial neural network," Renewable Energy, Elsevier, vol. 178(C), pages 226-240.
    12. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    13. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    14. Anna Trubetskaya, 2022. "Reactivity Effects of Inorganic Content in Biomass Gasification: A Review," Energies, MDPI, vol. 15(9), pages 1-36, April.
    15. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    16. Anastasovski, Aleksandar, 2023. "What is needed for transformation of industrial parks into potential positive energy industrial parks? A review," Energy Policy, Elsevier, vol. 173(C).
    17. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    18. Magdalena Krystyna Wyrwicka & Ewa Więcek-Janka & Łukasz Brzeziński, 2023. "Transition to Sustainable Energy System for Smart Cities—Literature Review," Energies, MDPI, vol. 16(21), pages 1-26, October.
    19. Danilo Boffa & Antonio Prencipe & Armando Papa & Christian Corsi & Mario Sorrentino, 2023. "Boosting circular economy via the b-corporation roads. The effect of the entrepreneurial culture and exogenous factors on sustainability performance," International Entrepreneurship and Management Journal, Springer, vol. 19(2), pages 523-561, June.
    20. Long, Feng & Zhai, Qiaolong & Liu, Peng & Cao, Xincheng & Jiang, Xia & Wang, Fei & Wei, Linshan & Liu, Chao & Jiang, Jianchun & Xu, Junming, 2020. "Catalytic conversion of triglycerides by metal-based catalysts and subsequent modification of molecular structure by ZSM-5 and Raney Ni for the production of high-value biofuel," Renewable Energy, Elsevier, vol. 157(C), pages 1072-1080.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7793-:d:416794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.