IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i16p6439-d396996.html
   My bibliography  Save this article

Energy Budgeting, Data Envelopment Analysis and Greenhouse Gas Emission from Rice Production System: A Case Study from Puddled Transplanted Rice and Direct-Seeded Rice System of Karnataka, India

Author

Listed:
  • Kariyaiah Basavalingaiah

    (Extension Education Unit, Madikeri, University of Agricultural & Horticultural Sciences, Shivamogga 577204, Karnataka, India)

  • Y. M. Ramesha

    (Agricultural Research Station, Dhadesugur, University of Agricultural Sciences, Raichur 584167, Karnataka, India)

  • Venkatesh Paramesh

    (Natural Resource Management Section, ICAR-Central, Coastal Agricultural Research Institute, Old Goa 403402, Goa, India)

  • G. A. Rajanna

    (ICAR-Indian Agricultural Research Institute, New Delhi 110012, India)

  • Shankar Lal Jat

    (ICAR-Indian Agricultural Research Institute, New Delhi 110012, India)

  • Shiva Dhar Misra

    (ICAR-Indian Agricultural Research Institute, New Delhi 110012, India)

  • Ashok Kumar Gaddi

    (Agricultural Research Station, Dhadesugur, University of Agricultural Sciences, Raichur 584167, Karnataka, India)

  • H. C. Girisha

    (College of Agriculture, Hassan, University of Agricultural Sciences, Bangalore 560065, Karnataka, India)

  • G. S. Yogesh

    (ICAR-Krishi Vigyan Kendra, Chamarajanagar, University of Agricultural Sciences, Bangalore 560065, Karnataka, India)

  • S. Raveesha

    (College of Horticulture, Hiriyur, University of Agricultural & Horticultural Sciences, Shivamogga 577204, Karnataka, India)

  • T. K. Roopa

    (College of Veterinary Science, Hassan, Karnataka Veterinary, Animal & Fisheries Sciences University, Bidar 573202, Karnataka, India)

  • K. S. Shashidhar

    (Department of Agronomy, Central Agricultural University, Imphal 795004, Manipur, India)

  • Bipin Kumar

    (ICAR-Indian Agricultural Research Institute, New Delhi 110012, India)

  • Diaa O. El-Ansary

    (Precision Agriculture Laboratory, Department of Pomology, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt)

  • Hosam O. Elansary

    (Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
    Floriculture, Ornamental Horticulture, and Garden Design Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
    Department of Geography, Environmental Management, and Energy Studies, University of Johannesburg, APK Campus, Johannesburg 2006, South Africa)

Abstract

The energy consumption pattern and greenhouse gas (GHG) emission of any rice production system is important to know the sustainability of varied cultivation and establishment technique. This study was conducted to determine the energy use pattern, GHG emission and efficiency of rice farms in puddled transplanted (PTR, rainfed) and direct-seeded rice (DSR, irrigated) production systems in Karnataka, India. The energy indices and GHG emission of different input and output in a rice production system were assessed by using energy and carbon equivalence. The efficiency of PTR and DSR farms were identified using data envelopment analysis (DEA) and energy optimization was ascertained. The key finding was excessive use of non-renewable energy inputs was observed for the PTR (92.4%) compare to DSR (60.3%) methods. The higher energy use efficiency (7.3), energy productivity (0.3 kg MJ −1 ) and energy profitability (6.3) were mainly attributed to the large decrease in energy inputs under DSR. The DEA showed efficiency for 26 PTR farms in comparison for 87 DSR farms. The mean technical efficiency value highlighted the scope for saving energy by 6% and 2% in PTR and DSR, respectively and showed an economic reduction of $405.5/ha with PTR versus $163.3/ha with the DSR method if these inefficient farms perform efficiently. The GHG emissions revealed that the total emissions for PTR versus DSR production caused by on-farm emissions were 86% and 65%, respectively. The DSR method also had a higher carbon efficiency ratio and carbon sustainability index (10.1 and 9.1, respectively). Thus, adoption of DSR method is imperative for reduction of energy consumption and GHG emissions to achieve the carbon sustainability.

Suggested Citation

  • Kariyaiah Basavalingaiah & Y. M. Ramesha & Venkatesh Paramesh & G. A. Rajanna & Shankar Lal Jat & Shiva Dhar Misra & Ashok Kumar Gaddi & H. C. Girisha & G. S. Yogesh & S. Raveesha & T. K. Roopa & K. S, 2020. "Energy Budgeting, Data Envelopment Analysis and Greenhouse Gas Emission from Rice Production System: A Case Study from Puddled Transplanted Rice and Direct-Seeded Rice System of Karnataka, India," Sustainability, MDPI, vol. 12(16), pages 1-24, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6439-:d:396996
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/16/6439/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/16/6439/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Mousavi Avval, Seyed Hashem & Rafiee, Hamed, 2011. "Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach," Renewable Energy, Elsevier, vol. 36(9), pages 2573-2579.
    2. Tuti, M.D. & Prakash, Ved & Pandey, B.M. & Bhattacharyya, R. & Mahanta, D. & Bisht, J.K. & Kumar, Mukesh & Mina, B.L. & Kumar, N. & Bhatt, J.C. & Srivastva, A.K., 2012. "Energy budgeting of colocasia-based cropping systems in the Indian sub-Himalayas," Energy, Elsevier, vol. 45(1), pages 986-993.
    3. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza, 2012. "Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran," Energy, Elsevier, vol. 44(1), pages 211-216.
    4. Chaudhary, V.P. & Singh, K.K. & Pratibha, G. & Bhattacharyya, Ranjan & Shamim, M. & Srinivas, I. & Patel, Anurag, 2017. "Energy conservation and greenhouse gas mitigation under different production systems in rice cultivation," Energy, Elsevier, vol. 130(C), pages 307-317.
    5. Chaudhary, V.P. & Gangwar, B. & Pandey, D.K. & Gangwar, K.S., 2009. "Energy auditing of diversified rice–wheat cropping systems in Indo-gangetic plains," Energy, Elsevier, vol. 34(9), pages 1091-1096.
    6. Kazemi, Hossein & Kamkar, Behnam & Lakzaei, Somayeh & Badsar, Meysam & Shahbyki, Malihe, 2015. "Energy flow analysis for rice production in different geographical regions of Iran," Energy, Elsevier, vol. 84(C), pages 390-396.
    7. Rafiee, Shahin & Mousavi Avval, Seyed Hashem & Mohammadi, Ali, 2010. "Modeling and sensitivity analysis of energy inputs for apple production in Iran," Energy, Elsevier, vol. 35(8), pages 3301-3306.
    8. Pahlavan, Reza & Omid, Mahmoud & Akram, Asadollah, 2011. "Energy use efficiency in greenhouse tomato production in Iran," Energy, Elsevier, vol. 36(12), pages 6714-6719.
    9. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    10. Paramesh, Venkatesh & Parajuli, Ranjan & Chakurkar, E.B. & Sreekanth, G.B. & Kumar, H.B. Chetan & Gokuldas, P.P. & Mahajan, Gopal R. & Manohara, K.K. & Viswanatha, Reddy K. & Ravisankar, N., 2019. "Sustainability, energy budgeting, and life cycle assessment of crop-dairy-fish-poultry mixed farming system for coastal lowlands under humid tropic condition of India," Energy, Elsevier, vol. 188(C).
    11. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Adarsh & Rana, K.S. & Choudhary, Anil K. & Bana, R.S. & Sharma, V.K. & Prasad, Shiv & Gupta, Gaurendra & Choudhary, Mukesh & Pradhan, Amaresh & Rajpoot, Sudhir K. & Kumar, Abhishek & Kumar, Ami, 2021. "Energy budgeting and carbon footprints of zero-tilled pigeonpea–wheat cropping system under sole or dual crop basis residue mulching and Zn-fertilization in a semi-arid agro-ecology," Energy, Elsevier, vol. 231(C).
    2. Leonidas Sotirios Kyrgiakos & Georgios Kleftodimos & George Vlontzos & Panos M. Pardalos, 2023. "A systematic literature review of data envelopment analysis implementation in agriculture under the prism of sustainability," Operational Research, Springer, vol. 23(1), pages 1-38, March.
    3. Raveena Kargwal & Yadvika & Vijay Kumar Singh & Anil Kumar, 2023. "Energy Use Patterns of Pearl Millet ( Pennisetumglaucum (L.)) Production in Haryana, India," World, MDPI, vol. 4(2), pages 1-18, April.
    4. Kumar, Ashok & Singh, Dilip & Mahapatra, S.K., 2022. "Energy and carbon budgeting of the pearl millet-wheat cropping system for environmentally sustainable agricultural land use planning in the rainfed semi-arid agro-ecosystem of Aravalli foothills," Energy, Elsevier, vol. 246(C).
    5. Sridhara, Shankarappa & Manoj, Konapura Nagaraja & Gopakkali, Pradeep, 2023. "A micro-level assessment of carbon equivalent greenhouse gas emission and energy budgeting of rice cultivation in India," Energy, Elsevier, vol. 278(C).
    6. Htwe, Than & Sinutok, Sutinee & Chotikarn, Ponlachart & Amin, Nowshad & Akhtaruzzaman, Md & Techato, Kuaanan & Hossain, Tareq, 2021. "Energy use efficiency and cost-benefits analysis of rice cultivation: A study on conventional and alternative methods in Myanmar," Energy, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pritpal Singh & Gurdeep Singh & G. P. S. Sodhi, 2022. "Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2079-2119, February.
    2. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India," Energy, Elsevier, vol. 174(C), pages 269-279.
    3. Venkatesh Paramesh & Parveen Kumar & Ranjan Parajuli & Rosa Francaviglia & Kallakeri Kannappa Manohara & Vadivel Arunachalam & Trivesh Mayekar & Sulekha Toraskar, 2023. "A Life Cycle Assessment of Rice–Rice and Rice–Cowpea Cropping Systems in the West Coast of India," Land, MDPI, vol. 12(2), pages 1-14, February.
    4. Khoshnevisan, Benyamin & Shariati, Hanifreza Motamed & Rafiee, Shahin & Mousazadeh, Hossein, 2014. "Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 316-324.
    5. Sridhara, Shankarappa & Manoj, Konapura Nagaraja & Gopakkali, Pradeep, 2023. "A micro-level assessment of carbon equivalent greenhouse gas emission and energy budgeting of rice cultivation in India," Energy, Elsevier, vol. 278(C).
    6. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Reduction of CO2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach," Energy, Elsevier, vol. 55(C), pages 676-682.
    7. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    8. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach," Applied Energy, Elsevier, vol. 88(11), pages 3765-3772.
    9. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production," Energy, Elsevier, vol. 58(C), pages 588-593.
    10. Singh, Pritpal & Singh, Gurdeep & Gupta, Alok & Sodhi, Gurjinder Pal Singh, 2023. "Data envelopment analysis based energy optimization for improving energy efficiency in wheat established following rice residue management in rice-wheat cropping system," Energy, Elsevier, vol. 284(C).
    11. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    12. Bhunia, Snehasish & Karmakar, Subrata & Bhattacharjee, Suvendu & Roy, Kingshuk & Kanthal, Sahely & Pramanick, Mahadev & Baishya, Aniket & Mandal, Biswapati, 2021. "Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices," Energy, Elsevier, vol. 236(C).
    13. Kumar, Ashok & Singh, Dilip & Mahapatra, S.K., 2022. "Energy and carbon budgeting of the pearl millet-wheat cropping system for environmentally sustainable agricultural land use planning in the rainfed semi-arid agro-ecosystem of Aravalli foothills," Energy, Elsevier, vol. 246(C).
    14. Anirban Nandy & Piyush Kumar Singh & Alok Kumar Singh, 2021. "Systematic Review and Meta- regression Analysis of Technical Efficiency of Agricultural Production Systems," Global Business Review, International Management Institute, vol. 22(2), pages 396-421, April.
    15. Kumar, Rakesh & Mishra, J.S. & Mondal, Surajit & Meena, Ram Swaroop & Sundaram, P.K. & Bhatt, B.P. & Pan, R.S. & Lal, Rattan & Saurabh, Kirti & Chandra, Naresh & Samal, S.K. & Hans, Hansraj & Raman, R, 2021. "Designing an ecofriendly and carbon-cum-energy efficient production system for the diverse agroecosystem of South Asia," Energy, Elsevier, vol. 214(C).
    16. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim, 2021. "Investigation of Energy Consumption and Associated CO 2 Emissions for Wheat–Rice Crop Rotation Farming," Energies, MDPI, vol. 14(16), pages 1-18, August.
    17. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Narges Banaeian & Muhammad Usman & Sobhy M. Ibrahim & Muhammad U. B. U. Butt & Muhammad Waseem & Imran Ali & Aamir Shakoor & Zahid M. Khan, 2020. "Investigation of Input and Output Energy for Wheat Production: A Comprehensive Study for Tehsil Mailsi (Pakistan)," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    18. Khoshroo, Alireza & Mulwa, Richard & Emrouznejad, Ali & Arabi, Behrouz, 2013. "A non-parametric Data Envelopment Analysis approach for improving energy efficiency of grape production," Energy, Elsevier, vol. 63(C), pages 189-194.
    19. Dong, Zefeng & Guan, Zhengfei & Grogan, Kelly A. & Skevas, Theodoros, 2015. "Energy and Environmental Efficiency of Greenhouse Growers in Michigan," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196840, Southern Agricultural Economics Association.
    20. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6439-:d:396996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.