IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p4155-d360181.html
   My bibliography  Save this article

Novel Multi-Criteria Intuitionistic Fuzzy SWARA–COPRAS Approach for Sustainability Evaluation of the Bioenergy Production Process

Author

Listed:
  • Arunodaya Raj Mishra

    (Department of Mathematics, Government College, Jaitwara 485221, Satna, Madhya Pradesh, India)

  • Pratibha Rani

    (Department of Mathematics, National Institute of Technology, Warangal 506004, Telangana, India)

  • Kiran Pandey

    (Department of Mathematics, Bioinformatics and Computer Application, Maulana Azad National Institute of Technology, Bhopal 462003, Madhya Pradesh, India)

  • Abbas Mardani

    (Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
    Faculty of Business Administration, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam)

  • Justas Streimikis

    (Lithuanian Institute of Agrarian Economics, A. Vivulskio g. 4A-13, 03220 Vilnius, Lithuania
    University of Economics and Human Science in Warsaw, Okopowa 59, 01-043 Warsaw, Poland)

  • Dalia Streimikiene

    (Lithuanian Energy Institute, Breslaujos 3, 50229 Kaunas, Lithuania)

  • Melfi Alrasheedi

    (Department of Quantitative Methods, School of Business, King Faisal University, Hofuf 31982, Saudi Arabia)

Abstract

Bioenergy is a kind of renewable energy that can potentially contribute to a broad spectrum of economic, environmental, and societal objectives and aid sustainable development. The assessment, management, and monitoring of the diverse bioenergy production technology alternatives are complex in nature and deliver different benefits due to the lack of precise and comprehensive data. Selection of an optimal bioenergy production technology (BPT) alternative is considered a complex multi-criteria decision-making (MCDM) problem that involves many incompatible tangible and intangible as well as qualitative and quantitative criteria. The procedure of defining and evaluating the weights of the criteria is an important concern for decision experts because the assessment and the final selection of the BPT alternative are carried out on the basis of the defined set of criteria. Intuitionistic fuzzy sets (IFSs) have received considerable attention due to their ability to handle the imprecision and vagueness that can arise in real-life situations. Thus, this study presents an integrated approach, based on stepwise weight assessment ratio analysis (SWARA) and complex proportional assessment (COPRAS) approaches, for the selection of BPT alternatives. In the integrated framework, criteria weights are determined by the SWARA procedure, and the ranking of BPT alternatives is decided by the COPRAS method using IFSs. The criteria weights evaluated by this approach involve the imprecision of experts’ opinions, which makes them more comprehensible. To express the efficiency and applicability of the integrated framework, a BPT selection problem is presented using IFSs. In addition, this study involved sensitivity analysis with respect to various sets of criteria weights to reveal the strength of the developed approach. The sensitivity analysis outcomes indicate that the agricultural and municipal waste of biogas (S 3 ) consistently secures the highest rank, despite how the criteria weights vary. Finally, a comparative study is discussed to analyze the validity of the obtained result. The findings of this study confirm that the proposed framework is more useful than and consistent with previously developed methods using the IFSs environment.

Suggested Citation

  • Arunodaya Raj Mishra & Pratibha Rani & Kiran Pandey & Abbas Mardani & Justas Streimikis & Dalia Streimikiene & Melfi Alrasheedi, 2020. "Novel Multi-Criteria Intuitionistic Fuzzy SWARA–COPRAS Approach for Sustainability Evaluation of the Bioenergy Production Process," Sustainability, MDPI, vol. 12(10), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4155-:d:360181
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/4155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/4155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ebru Turanoglu Bekar & Mehmet Cakmakci & Cengiz Kahraman, 2016. "Fuzzy COPRAS method for performance measurement in total productive maintenance: a comparative analysis," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 17(5), pages 663-684, September.
    2. Doukas, Haris Ch. & Andreas, Botsikas M. & Psarras, John E., 2007. "Multi-criteria decision aid for the formulation of sustainable technological energy priorities using linguistic variables," European Journal of Operational Research, Elsevier, vol. 182(2), pages 844-855, October.
    3. Khishtandar, Soheila & Zandieh, Mostafa & Dorri, Behrouz, 2017. "A multi criteria decision making framework for sustainability assessment of bioenergy production technologies with hesitant fuzzy linguistic term sets: The case of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1130-1145.
    4. Professor Snezana UROSEVIC & Darjan KARABASEVIC & Dragisa STANUJKIC & Mladjan MAKSIMOVIC, 2017. "An Approach to Personnel Selection in the Tourism Industry Based on the SWARA and the WASPAS Methods," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(1), pages 75-88.
    5. Buchholz, Thomas & Rametsteiner, Ewald & Volk, Timothy A. & Luzadis, Valerie A., 2009. "Multi Criteria Analysis for bioenergy systems assessments," Energy Policy, Elsevier, vol. 37(2), pages 484-495, February.
    6. Kahraman, Cengiz & Kaya, İhsan & Cebi, Selcuk, 2009. "A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process," Energy, Elsevier, vol. 34(10), pages 1603-1616.
    7. Nixon, J.D. & Dey, P.K. & Ghosh, S.K. & Davies, P.A., 2013. "Evaluation of options for energy recovery from municipal solid waste in India using the hierarchical analytical network process," Energy, Elsevier, vol. 59(C), pages 215-223.
    8. Dragisa STANUJKIC & Darjan KARABASEVIC & Edmundas Kazimieras ZAVADSKAS, 2017. "A New Approach for Selecting Alternatives Based on the Adapted Weighted Sum and the SWARA Methods: A Case of Personnel Selection," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(3), pages 39-56.
    9. Sharma, B. & Ingalls, R.G. & Jones, C.L. & Khanchi, A., 2013. "Biomass supply chain design and analysis: Basis, overview, modeling, challenges, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 608-627.
    10. Arunodaya Raj Mishra & Pratibha Rani, 2018. "Interval-Valued Intuitionistic Fuzzy WASPAS Method: Application in Reservoir Flood Control Management Policy," Group Decision and Negotiation, Springer, vol. 27(6), pages 1047-1078, December.
    11. Dragisa Stanujkic & Edmundas Kazimieras Zavadskas & Darjan Karabasevic & Zenonas Turskis & Violeta Keršulienė, 2017. "New group decision-making ARCAS approach based on the integration of the SWARA and the ARAS methods adapted for negotiations," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(4), pages 599-618, July.
    12. James J.H. Liou & Jolanta Tamošaitienė & Edmundas K. Zavadskas & Gwo-Hshiung Tzeng, 2016. "New hybrid COPRAS-G MADM Model for improving and selecting suppliers in green supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 114-134, January.
    13. Mulliner, Emma & Malys, Naglis & Maliene, Vida, 2016. "Comparative analysis of MCDM methods for the assessment of sustainable housing affordability," Omega, Elsevier, vol. 59(PB), pages 146-156.
    14. Şengül, Ümran & Eren, Miraç & Eslamian Shiraz, Seyedhadi & Gezder, Volkan & Şengül, Ahmet Bilal, 2015. "Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 617-625.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Indre Siksnelyte-Butkiene & Dalia Streimikiene & Tomas Balezentis & Virgilijus Skulskis, 2021. "A Systematic Literature Review of Multi-Criteria Decision-Making Methods for Sustainable Selection of Insulation Materials in Buildings," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    2. Kasım Şimşek & Selçuk Alp, 2022. "Evaluation of Landfill Site Selection by Combining Fuzzy Tools in GIS-Based Multi-Criteria Decision Analysis: A Case Study in Diyarbakır, Turkey," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    3. Ibrahim M. Hezam & Naga Rama Devi Vedala & Bathina Rajesh Kumar & Arunodaya Raj Mishra & Fausto Cavallaro, 2023. "Assessment of Biofuel Industry Sustainability Factors Based on the Intuitionistic Fuzzy Symmetry Point of Criterion and Rank-Sum-Based MAIRCA Method," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
    4. Snežana Tadić & Milovan Kovač & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2021. "The Selection of Intermodal Transport System Scenarios in the Function of Southeastern Europe Regional Development," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    5. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Bing Yan & Yuan Rong & Liying Yu & Yuting Huang, 2022. "A Hybrid Intuitionistic Fuzzy Group Decision Framework and Its Application in Urban Rail Transit System Selection," Mathematics, MDPI, vol. 10(12), pages 1-26, June.
    7. Vecihi Yiğit & Nazlı Nisa Demir & Hisham Alidrisi & Mehmet Emin Aydin, 2020. "Elicitation of the Factors Affecting Electricity Distribution Efficiency Using the Fuzzy AHP Method," Mathematics, MDPI, vol. 9(1), pages 1-25, December.
    8. Almulhim, Tarifa & Barahona, Igor, 2023. "An extended picture fuzzy multicriteria group decision analysis with different weights: A case study of COVID-19 vaccine allocation," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    9. Weibing Sun & Fu Zhang & Shuya Tai & Jinkui Wu & Yaqiong Mu, 2021. "Study on Glacial Tourism Exploitation in the Dagu Glacier Scenic Spot Based on the AHP–ASEB Method," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    10. Ayyildiz, Ertugrul, 2022. "Fermatean fuzzy step-wise Weight Assessment Ratio Analysis (SWARA) and its application to prioritizing indicators to achieve sustainable development goal-7," Renewable Energy, Elsevier, vol. 193(C), pages 136-148.
    11. Pratibha Rani & Jabir Ali & Raghunathan Krishankumar & Arunodaya Raj Mishra & Fausto Cavallaro & Kattur S. Ravichandran, 2021. "An Integrated Single-Valued Neutrosophic Combined Compromise Solution Methodology for Renewable Energy Resource Selection Problem," Energies, MDPI, vol. 14(15), pages 1-23, July.
    12. He, Jun & Huang, Zilong & Mishra, Arunodaya Raj & Alrasheedi, Melfi, 2021. "Developing a new framework for conceptualizing the emerging sustainable community-based tourism using an extended interval-valued Pythagorean fuzzy SWARA-MULTIMOORA," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    13. Bouraima, Mouhamed Bayane & Qiu, Yanjun & Stević, Željko & Simić, Vladimir, 2023. "Assessment of alternative railway systems for sustainable transportation using an integrated IRN SWARA and IRN CoCoSo model," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khishtandar, Soheila & Zandieh, Mostafa & Dorri, Behrouz, 2017. "A multi criteria decision making framework for sustainability assessment of bioenergy production technologies with hesitant fuzzy linguistic term sets: The case of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1130-1145.
    2. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    3. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    4. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2015. "Assessing the global sustainability of different electricity generation systems," Energy, Elsevier, vol. 89(C), pages 473-489.
    5. Yelda Ayrim & Kumru Didem Atalay & Gülin Feryal Can, 2018. "A New Stochastic MCDM Approach Based on COPRAS," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 857-882, May.
    6. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    7. Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Valentinas Podvezko & Ieva Ubarte & Arturas Kaklauskas, 2017. "MCDM Assessment of a Healthy and Safe Built Environment According to Sustainable Development Principles: A Practical Neighborhood Approach in Vilnius," Sustainability, MDPI, vol. 9(5), pages 1-30, April.
    8. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    9. Audrius Čereška & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Valentinas Podvezko & Ina Tetsman & Irina Grinbergienė, 2016. "Sustainable Assessment of Aerosol Pollution Decrease Applying Multiple Attribute Decision-Making Methods," Sustainability, MDPI, vol. 8(7), pages 1-12, June.
    10. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    11. Milutinović, Biljana & Stefanović, Gordana & Dassisti, Michele & Marković, Danijel & Vučković, Goran, 2014. "Multi-criteria analysis as a tool for sustainability assessment of a waste management model," Energy, Elsevier, vol. 74(C), pages 190-201.
    12. Pei-Hsuan Tsai & Chih-Jou Chen & Ho-Chin Yang, 2021. "Using Porter’s Diamond Model to Assess the Competitiveness of Taiwan’s Solar Photovoltaic Industry," SAGE Open, , vol. 11(1), pages 21582440209, January.
    13. Fang, Hong & Wang, Xu & Song, Wenyan, 2020. "Technology selection for photovoltaic cell from sustainability perspective: An integrated approach," Renewable Energy, Elsevier, vol. 153(C), pages 1029-1041.
    14. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    15. Ali Mostafaeipour & Seyyed Jalaladdin Hosseini Dehshiri & Seyyed Shahabaddin Hosseini Dehshiri & Mehdi Jahangiri & Kuaanan Techato, 2020. "A Thorough Analysis of Potential Geothermal Project Locations in Afghanistan," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    16. Athanasios Kolios & Varvara Mytilinou & Estivaliz Lozano-Minguez & Konstantinos Salonitis, 2016. "A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs," Energies, MDPI, vol. 9(7), pages 1-21, July.
    17. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).
    19. Doukas, Haris, 2013. "Modelling of linguistic variables in multicriteria energy policy support," European Journal of Operational Research, Elsevier, vol. 227(2), pages 227-238.
    20. Ozorhon, Beliz & Batmaz, Arda & Caglayan, Semih, 2018. "Generating a framework to facilitate decision making in renewable energy investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 217-226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4155-:d:360181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.