IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i6p1569-d214023.html
   My bibliography  Save this article

Energy Efficiency as a Wicked Problem

Author

Listed:
  • Patrik Thollander

    (Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping 581 83, Sweden
    Department of Building, Energy and Environment Engineering, University of Gävle, 801 76 Gävle, Sweden)

  • Jenny Palm

    (IIIEE, International Institute for Industrial Environmental Economics, Lund University, 223 50 Lund, Sweden)

  • Johan Hedbrant

    (Division of Applied Thermodynamics and Fluid Mechanics, Department of Management and Engineering, Linköping University, 581 83 Linköping, Sweden)

Abstract

Together with increased shares of renewable energy supply, improved energy efficiency is the foremost means of mitigating climate change. However, the energy efficiency potential is far from being realized, which is commonly explained by the existence of various barriers to energy efficiency. Initially mentioned by Churchman, the term “wicked problems” became established in the 1970s, meaning a kind of problem that has a resistance to resolution because of incomplete, contradictory, or changing requirements. In the academic literature, wicked problems have later served as a critical model in the understanding of various challenges related to society, such as for example climate change mitigation. This aim of this paper is to analyze how the perspective of wicked problems can contribute to an enhanced understanding of improved energy efficiency. The paper draws examples from the manufacturing sector. Results indicate that standalone technology improvements as well as energy management and energy policy programs giving emphasis to standalone technology improvements may not represent a stronger form of a wicked problem as such. Rather, it seems to be the actual decision-making process involving values among the decision makers as well as the level of needed knowledge involved in decision-making that give rise to the “wickedness”. The analysis shows that wicked problems arise in socio-technical settings involving several components such as technology, systems, institutions, and people, which make post-normal science a needed approach.

Suggested Citation

  • Patrik Thollander & Jenny Palm & Johan Hedbrant, 2019. "Energy Efficiency as a Wicked Problem," Sustainability, MDPI, vol. 11(6), pages 1-11, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1569-:d:214023
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/6/1569/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/6/1569/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Backlund, Sandra & Thollander, Patrik & Palm, Jenny & Ottosson, Mikael, 2012. "Extending the energy efficiency gap," Energy Policy, Elsevier, vol. 51(C), pages 392-396.
    2. Pere Ariza-Montobbio & Katharine N. Farrell, 2012. "Wind Farm Siting and Protected Areas in Catalonia: Planning Alternatives or Reproducing 'One-Dimensional Thinking'?," Sustainability, MDPI, vol. 4(12), pages 1-26, November.
    3. anonymous, 1967. "Free for All," Management Science, INFORMS, vol. 13(8), pages 533-539, April.
    4. Thollander, Patrik & Kimura, Osamu & Wakabayashi, Masayo & Rohdin, Patrik, 2015. "A review of industrial energy and climate policies in Japan and Sweden with emphasis towards SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 504-512.
    5. Patrik Thollander & Jenny Palm, 2015. "Industrial Energy Management Decision Making for Improved Energy Efficiency—Strategic System Perspectives and Situated Action in Combination," Energies, MDPI, vol. 8(6), pages 1-10, June.
    6. anonymous, 1967. "Free For All," Management Science, INFORMS, vol. 13(6), pages 378-382, February.
    7. Victor Valentine, Scott & Sovacool, Benjamin K. & Brown, Marilyn A., 2017. "Frame envy in energy policy ideology: A social constructivist framework for wicked energy problems," Energy Policy, Elsevier, vol. 109(C), pages 623-630.
    8. Paramonova, Svetlana & Thollander, Patrik & Ottosson, Mikael, 2015. "Quantifying the extended energy efficiency gap-evidence from Swedish electricity-intensive industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 472-483.
    9. Palm, Jenny & Thollander, Patrik, 2010. "An interdisciplinary perspective on industrial energy efficiency," Applied Energy, Elsevier, vol. 87(10), pages 3255-3261, October.
    10. Michael P. Totten, 2012. "GreenATP: APPortunities to catalyze local to global positive tipping points through collaborative innovation networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(1), pages 98-113, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petru Lucian Curșeu & Sandra G.L. Schruijer, 2020. "Participation and Goal Achievement of Multiparty Collaborative Systems Dealing with Complex Problems: A Natural Experiment," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    2. Aleksander Jakimowicz, 2022. "The Energy Transition as a Super Wicked Problem: The Energy Sector in the Era of Prosumer Capitalism," Energies, MDPI, vol. 15(23), pages 1-31, December.
    3. A S M Monjurul Hasan & Mohammad Rokonuzzaman & Rashedul Amin Tuhin & Shah Md. Salimullah & Mahfuz Ullah & Taiyeb Hasan Sakib & Patrik Thollander, 2019. "Drivers and Barriers to Industrial Energy Efficiency in Textile Industries of Bangladesh," Energies, MDPI, vol. 12(9), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akvile Lawrence & Patrik Thollander & Magnus Karlsson, 2018. "Drivers, Barriers, and Success Factors for Improving Energy Management in the Pulp and Paper Industry," Sustainability, MDPI, vol. 10(6), pages 1-35, June.
    2. Hasan, A S M Monjurul & Tuhin, Rashedul Amin & Ullah, Mahfuz & Sakib, Taiyeb Hasan & Thollander, Patrik & Trianni, Andrea, 2021. "A comprehensive investigation of energy management practices within energy intensive industries in Bangladesh," Energy, Elsevier, vol. 232(C).
    3. José Rafael Lopes & Salvador Ávila & Ricardo Kalid & Jorge Laureano Moya Rodríguez, 2018. "Energy Efficiency Improvement in Non-Intensive Energy Enterprises: A Framework Proposal," Energies, MDPI, vol. 11(5), pages 1-16, May.
    4. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    5. He, Yong & Liao, Nuo & Zhou, Ya, 2018. "Analysis on provincial industrial energy efficiency and its influencing factors in China based on DEA-RS-FANN," Energy, Elsevier, vol. 142(C), pages 79-89.
    6. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Monjurul Hasan, A S M & Trianni, Andrea & Shukla, Nagesh & Katic, Mile, 2022. "A novel characterization based framework to incorporate industrial energy management services," Applied Energy, Elsevier, vol. 313(C).
    8. Patrik Thollander & Jenny Palm, 2015. "Industrial Energy Management Decision Making for Improved Energy Efficiency—Strategic System Perspectives and Situated Action in Combination," Energies, MDPI, vol. 8(6), pages 1-10, June.
    9. David B. Montgomery, 2001. "Management Science in Marketing: Prehistory, Origin, and Early Years of the INFORMS Marketing College," Marketing Science, INFORMS, vol. 20(4), pages 337-348.
    10. N. Osei OWUSU, 2020. "Demographics and District Managers’ Commitment to Inter-organisational Collaboration during Disasters’Management in Ghana," Journal of Public Administration and Governance, Macrothink Institute, vol. 10(1), pages 312332-3123, December.
    11. Sophie Flemig & Stephen Osborne & Tony Kinder, 2016. "Risky business—reconceptualizing risk and innovation in public services," Public Money & Management, Taylor & Francis Journals, vol. 36(6), pages 425-432, September.
    12. Trianni, Andrea & Cagno, Enrico & Bertolotti, Matteo & Thollander, Patrik & Andersson, Elias, 2019. "Energy management: A practice-based assessment model," Applied Energy, Elsevier, vol. 235(C), pages 1614-1636.
    13. Palm, J. & Kojonsaari, A.-R. & Öhrlund, I. & Fowler, N. & Bartusch, C., 2023. "Drivers and barriers to participation in Sweden's local flexibility markets for electricity," Utilities Policy, Elsevier, vol. 82(C).
    14. Thomas Zobel & Charlotte Malmgren, 2016. "Evaluating the Management System Approach for Industrial Energy Efficiency Improvements," Energies, MDPI, vol. 9(10), pages 1-12, September.
    15. Andersson, Elias & Karlsson, Magnus & Thollander, Patrik & Paramonova, Svetlana, 2018. "Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 165-177.
    16. Paulo B. Goes & Mingfeng Lin & Ching-man Au Yeung, 2014. "“Popularity Effect” in User-Generated Content: Evidence from Online Product Reviews," Information Systems Research, INFORMS, vol. 25(2), pages 222-238, June.
    17. Bonilla-Campos, Iñigo & Nieto, Nerea & del Portillo-Valdes, Luis & Manzanedo, Jaio & Gaztañaga, Haizea, 2020. "Energy efficiency optimisation in industrial processes: Integral decision support tool," Energy, Elsevier, vol. 191(C).
    18. Solnørdal, Mette Talseth & Thyholdt, Sverre Braathen, 2019. "Absorptive capacity and energy efficiency in manufacturing firms – An empirical analysis in Norway," Energy Policy, Elsevier, vol. 132(C), pages 978-990.
    19. Noor Jalo & Ida Johansson & Mariana Andrei & Therese Nehler & Patrik Thollander, 2021. "Barriers to and Drivers of Energy Management in Swedish SMEs," Energies, MDPI, vol. 14(21), pages 1-21, October.
    20. Werner König & Sabine Löbbe & Stefan Büttner & Christian Schneider, 2020. "Establishing Energy Efficiency—Drivers for Energy Efficiency in German Manufacturing Small- and Medium-Sized Enterprises," Energies, MDPI, vol. 13(19), pages 1-31, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1569-:d:214023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.