IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p7053-d296101.html
   My bibliography  Save this article

Effects of Climate and Land-Cover Changes on Soil Erosion in Brazilian Pantanal

Author

Listed:
  • Carina B. Colman

    (Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil)

  • Paulo Tarso S. Oliveira

    (Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
    Master’s Water Resources and Environmental Sanitation, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil)

  • André Almagro

    (Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil)

  • Britaldo S. Soares-Filho

    (Center for Remote Sensing, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil)

  • Dulce B. B. Rodrigues

    (Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil)

Abstract

The Pantanal biome integrates the lowlands of the Upper Paraguay Basin (UPB), which is hydrologically connected to the biomes of the Cerrado and Amazon (the highlands of the UPB). The effects of recent land-cover and land-use (LCLU) changes in the highlands, combined with climate change, are still poorly understood in this region. Here, we investigate the effects of soil erosion in the Brazilian Pantanal under climate and LCLU changes by combining different scenarios of projected rainfall erosivity and land-cover management. We compute the average annual soil erosion for the baseline (2012) and projected scenarios for 2020, 2035, and 2050. For the worst scenario, we noted an increase in soil loss of up to 100% from 2012 to 2050, associated with cropland expansion in some parts of the highlands. Furthermore, for the same period, our results indicated an increase of 20 to 40% in soil loss in parts of the Pantanal biome, which was associated with farmland increase (mainly for livestock) in the lowlands. Therefore, to ensure water, food, energy, and ecosystem service security over the next decades in the whole UPB, robust and comprehensive planning measures need to be developed, especially for the most impacted areas found in our study.

Suggested Citation

  • Carina B. Colman & Paulo Tarso S. Oliveira & André Almagro & Britaldo S. Soares-Filho & Dulce B. B. Rodrigues, 2019. "Effects of Climate and Land-Cover Changes on Soil Erosion in Brazilian Pantanal," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7053-:d:296101
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/7053/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/7053/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sartori, Martina & Philippidis, George & Ferrari, Emanuele & Borrelli, Pasquale & Lugato, Emanuele & Montanarella, Luca & Panagos, Panos, 2019. "A linkage between the biophysical and the economic: Assessing the global market impacts of soil erosion," Land Use Policy, Elsevier, vol. 86(C), pages 299-312.
    2. Jullian Souza Sone & Paulo T. Sanches de Oliveira & Pedro A. Pereira Zamboni & Nelson O. Motta Vieira & Glauber Altrão Carvalho & Manuel C. Motta Macedo & Alexandre Romeiro de Araujo & Denise Baptagli, 2019. "Effects of Long-Term Crop-Livestock-Forestry Systems on Soil Erosion and Water Infiltration in a Brazilian Cerrado Site," Sustainability, MDPI, vol. 11(19), pages 1-13, September.
    3. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    4. Seidl, Andrew F. & Silva, Joao dos Santos Vila de & Moraes, Andre Steffens, 2001. "Cattle ranching and deforestation in the Brazilian Pantanal," Ecological Economics, Elsevier, vol. 36(3), pages 413-425, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengfan Cai & Chunjiang An & Christophe Guy & Chen Lu, 2020. "Assessment of Soil and Water Conservation Practices in the Loess Hilly Region Using a Coupled Rainfall-Runoff-Erosion Model," Sustainability, MDPI, vol. 12(3), pages 1-18, January.
    2. Mustafa Tufekcioglu & Richard C. Schultz & Thomas M. Isenhart & John L. Kovar & James R. Russell, 2020. "Riparian Land-Use, Stream Morphology and Streambank Erosion within Grazed Pastures in Southern Iowa, USA: A Catchment-Wide Perspective," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    3. Xiaowei Guo & Licong Dai & Qian Li & Dawen Qian & Guangmin Cao & Huakun Zhou & Yangong Du, 2020. "Light Grazing Significantly Reduces Soil Water Storage in Alpine Grasslands on the Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 12(6), pages 1-12, March.
    4. Lingxia Wang & Zhongwu Li & Danyang Wang & Xiaoqian Hu & Ke Ning, 2020. "Self-Organizing Map Network-Based Soil and Water Conservation Partitioning for Small Watersheds: Case Study Conducted in Xiaoyang Watershed, China," Sustainability, MDPI, vol. 12(5), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    2. Panos Panagos & Pasquale Borrelli & David Robinson, 2020. "FAO calls for actions to reduce global soil erosion," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 789-790, May.
    3. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    4. Elisa Barbour & Lara Kueppers, 2012. "Conservation and management of ecological systems in a changing California," Climatic Change, Springer, vol. 111(1), pages 135-163, March.
    5. van der Hoff, Richard & Nascimento, Nathália & Fabrício-Neto, Ailton & Jaramillo-Giraldo, Carolina & Ambrosio, Geanderson & Arieira, Julia & Afonso Nobre, Carlos & Rajão, Raoni, 2022. "Policy-oriented ecosystem services research on tropical forests in South America: A systematic literature review," Ecosystem Services, Elsevier, vol. 56(C).
    6. Brendan Fisher & Stephen Polasky & Thomas Sterner, 2011. "Conservation and Human Welfare: Economic Analysis of Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 151-159, February.
    7. Pütz, S. & Groeneveld, J. & Alves, L.F. & Metzger, J.P. & Huth, A., 2011. "Fragmentation drives tropical forest fragments to early successional states: A modelling study for Brazilian Atlantic forests," Ecological Modelling, Elsevier, vol. 222(12), pages 1986-1997.
    8. Stephanie D. Maier & Jan Paul Lindner & Javier Francisco, 2019. "Conceptual Framework for Biodiversity Assessments in Global Value Chains," Sustainability, MDPI, vol. 11(7), pages 1-34, March.
    9. Poonam Tripathi & Mukund Dev Behera & Partha Sarathi Roy, 2017. "Optimized grid representation of plant species richness in India—Utility of an existing national database in integrated ecological analysis," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-13, March.
    10. Davis, Katrina & Pannell, David J. & Kragt, Marit & Gelcich, Stefan & Schilizzi, Steven, 2014. "Accounting for enforcement is essential to improve the spatial allocation of marine restricted-use zoning systems," Working Papers 195718, University of Western Australia, School of Agricultural and Resource Economics.
    11. Juliana Silveira dos Santos & Fausto Miziara & Hayla da Silva Fernandes & Renato Cezar Miranda & Rosane Garcia Collevatti, 2021. "Technification in Dairy Farms May Reconcile Habitat Conservation in a Brazilian Savanna Region," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    12. Ariane Amin & Johanna Choumert, 2015. "Development and biodiversity conservation in Sub-Saharan Africa: A spatial analysis," Economics Bulletin, AccessEcon, vol. 35(1), pages 729-744.
    13. Sándor KESZTHELYI & Zsolt PÓNYA & Ferenc PÁL-FÁM, 2017. "Climate-induced seasonal activity and flight period of cerambycid beetles in the Zselic forests, Hungary," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(11), pages 503-510.
    14. Feng Dong & Chih-Ming Hung & Shou-Hsien Li & Xiao-Jun Yang, 2021. "Potential Himalayan community turnover through the Late Pleistocene," Climatic Change, Springer, vol. 164(1), pages 1-10, January.
    15. Johnston, Robert J. & Ramachandran, Mahesh & Schultz, Eric T. & Segerson, Kathleen & Besedin, Elena Y., 2011. "Characterizing Spatial Pattern in Ecosystem Service Values when Distance Decay Doesn’t Apply: Choice Experiments and Local Indicators of Spatial Association," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103374, Agricultural and Applied Economics Association.
    16. Tim Theissen & Annette Otte & Rainer Waldhardt, 2022. "High-Mountain Landscape Classification to Analyze Patterns of Land Use and Potential Natural Vegetation," Land, MDPI, vol. 11(7), pages 1-20, July.
    17. Laurent Debroux & Giuseppe Topa & David Kaimowitz & Alain Karsenty & Terese Hart & Awono Abdon & Fidele Amsini & Conrad Aveling & Alain Bertrand & Mohammed Bekhechi & Carlo Bravi & Eric Chezeaux & Ken, 2007. "Forests in Post- Conflict Democratic Republic of Congo: Analysis of a Priority Agenda," Selected Books, CIRAD, Forest department, UPR40, edition 1, volume 1, number 10.
    18. Amir, Sulfikar, 2023. "Scrutinising Nusantara: the making of an authoritarian city," LSE Research Online Documents on Economics 119201, London School of Economics and Political Science, LSE Library.
    19. World Bank, 2017. "Brazil’s INDC Restoration and Reforestation Target," World Bank Publications - Reports 28588, The World Bank Group.
    20. Carlos Cerrejón & Osvaldo Valeria & Jesús Muñoz & Nicole J Fenton, 2022. "Small but visible: Predicting rare bryophyte distribution and richness patterns using remote sensing-based ensembles of small models," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7053-:d:296101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.