IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i23p6682-d290935.html
   My bibliography  Save this article

Bibliometric Analysis of the Mass Transport in a Gas Diffusion Layer in PEM Fuel Cells

Author

Listed:
  • Blandy Pamplona Solis

    (Information Systems Department, University of Guadalajara, Zapopan 45100, Mexico
    Tecnológico Nacional de México/I. T. Chetumal, Chetumal 77013, Mexico)

  • Julio César Cruz Argüello

    (Tecnológico Nacional de México/I. T. Chetumal, Chetumal 77013, Mexico)

  • Leopoldo Gómez Barba

    (Information Systems Department, University of Guadalajara, Zapopan 45100, Mexico)

  • Mayra Polett Gurrola

    (CONACYT-Tecnológico Nacional de México/I. T. Chetumal, Chetumal 77013, Mexico)

  • Zakaryaa Zarhri

    (CONACYT-Tecnológico Nacional de México/I. T. Chetumal, Chetumal 77013, Mexico)

  • Danna Lizeth TrejoArroyo

    (CONACYT-Tecnológico Nacional de México/I. T. Chetumal, Chetumal 77013, Mexico)

Abstract

The growth trend of publications in the field of Proton Exchange Membrane Fuel Cell (PEMFC) was analyzed using bibliometric techniques to the identification of the areas with significant development and the orientations that have guided the research on energy cells. This study extracted the data from Scopus and Web of Science (WoS) databases to compare the bibliometric indicators of the published productions. In spite of bibliometric analysis advantages to knowing about the trends in a study area, this research requires methods to support the investigation process through the selection of a relevant bibliographic portfolio. This study applied the Methodi Ordinatio that provides a new approach to achieve it. A proposed list of the articles ranked by InOrdinatio is presented to compose the final portfolio. The obtained results in the research sub-theme of the Mass Transport in Gas Diffusion Layer (GDL) confirm the complexity in the study area by presenting erratic patterns of exponential growth. United States, China, and Japan are the leading countries on PEMFC publications. These countries have in common a strong spending by the business sector for R&D, and their gross domestic product is greater than 2%.

Suggested Citation

  • Blandy Pamplona Solis & Julio César Cruz Argüello & Leopoldo Gómez Barba & Mayra Polett Gurrola & Zakaryaa Zarhri & Danna Lizeth TrejoArroyo, 2019. "Bibliometric Analysis of the Mass Transport in a Gas Diffusion Layer in PEM Fuel Cells," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6682-:d:290935
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/23/6682/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/23/6682/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    2. Elizabeth S. Vieira & José A. N. F. Gomes, 2009. "A comparison of Scopus and Web of Science for a typical university," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(2), pages 587-600, November.
    3. Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
    4. Cao, Tao-Feng & Lin, Hong & Chen, Li & He, Ya-Ling & Tao, Wen-Quan, 2013. "Numerical investigation of the coupled water and thermal management in PEM fuel cell," Applied Energy, Elsevier, vol. 112(C), pages 1115-1125.
    5. Carton, J.G. & Lawlor, V. & Olabi, A.G. & Hochenauer, C. & Zauner, G., 2012. "Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels," Energy, Elsevier, vol. 39(1), pages 63-73.
    6. Ogawa, Takaya & Kajikawa, Yuya, 2015. "Assessing the industrial opportunity of academic research with patent relatedness: A case study on polymer electrolyte fuel cells," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 469-475.
    7. Anne-Wil Harzing & Satu Alakangas, 2016. "Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 787-804, February.
    8. Regina Negri Pagani & João Luiz Kovaleski & Luis Mauricio Resende, 2015. "Methodi Ordinatio: a proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2109-2135, December.
    9. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    10. Aghaei Chadegani, Arezoo & Salehi, Hadi & Md Yunus, Melor & Farhadi, Hadi & Fooladi, Masood & Farhadi, Maryam & Ale Ebrahim, Nader, 2013. "A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases," MPRA Paper 46898, University Library of Munich, Germany, revised 18 Mar 2013.
    11. Chen, Hua-Qi & Wang, Xiuping & He, Li & Chen, Ping & Wan, Yuehua & Yang, Lingyun & Jiang, Shuian, 2016. "Chinese energy and fuels research priorities and trend: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 966-975.
    12. Park, Jaeman & Oh, Hwanyeong & Lee, Yoo Il & Min, Kyoungdoug & Lee, Eunsook & Jyoung, Jy-Young, 2016. "Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance," Applied Energy, Elsevier, vol. 171(C), pages 200-212.
    13. Movahedi, M. & Ramiar, A. & Ranjber, A.A., 2018. "3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field," Energy, Elsevier, vol. 142(C), pages 617-632.
    14. Arho Suominen, 2014. "Phases of growth in a green tech research network: a bibliometric evaluation of fuel cell technology from 1991 to 2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 51-72, July.
    15. Mei Hsiu-Ching Ho & Vincent H. Lin & John S. Liu, 2014. "Exploring knowledge diffusion among nations: a study of core technologies in fuel cells," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 149-171, July.
    16. Chevalier, S. & Josset, C. & Auvity, B., 2018. "Analytical solutions and dimensional analysis of pseudo 2D current density distribution model in PEM fuel cells," Renewable Energy, Elsevier, vol. 125(C), pages 738-746.
    17. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    18. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
    19. Zhang, S. & Reimer, U. & Beale, S.B. & Lehnert, W. & Stolten, D., 2019. "Modeling polymer electrolyte fuel cells: A high precision analysis," Applied Energy, Elsevier, vol. 233, pages 1094-1103.
    20. Elaine Aparecida Regiani Campos & Regina Negri Pagani & Luis Mauricio Resende & Joseane Pontes, 2018. "Construction and qualitative assessment of a bibliographic portfolio using the methodology Methodi Ordinatio," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 815-842, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruna Maria Gerônimo & Giane Gonçalves Lenzi, 2023. "Maturity Models for Testing and Calibration Laboratories: A Systematic Literature Review," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    2. Doyeon Lee & Keunhwan Kim, 2021. "Research and Development Investment and Collaboration Framework for the Hydrogen Economy in South Korea," Sustainability, MDPI, vol. 13(19), pages 1-28, September.
    3. Bethânia Ávila Rodrigues & Mariana Machado Fidelis Nascimento & Juliana Vitória Messias Bittencourt, 2021. "Mapping of the behavior of scientific publications since the decade of 1990 until the present day in the field of food and nutrition security," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2459-2483, March.
    4. Gayathiri Verasoundarapandian & Chiew-Yen Wong & Noor Azmi Shaharuddin & Claudio Gomez-Fuentes & Azham Zulkharnain & Siti Aqlima Ahmad, 2021. "A Review and Bibliometric Analysis on Applications of Microbial Degradation of Hydrocarbon Contaminants in Arctic Marine Environment at Metagenomic and Enzymatic Levels," IJERPH, MDPI, vol. 18(4), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belussi, Fiorenza & Orsi, Luigi & Savarese, Maria, 2019. "Mapping Business Model Research: A Document Bibliometric Analysis," Scandinavian Journal of Management, Elsevier, vol. 35(3).
    2. Luisa F. Cabeza & Marta Chàfer & Érika Mata, 2020. "Comparative Analysis of Web of Science and Scopus on the Energy Efficiency and Climate Impact of Buildings," Energies, MDPI, vol. 13(2), pages 1-24, January.
    3. de Carvalho, Gustavo Dambiski Gomes & Sokulski, Carla Cristiane & da Silva, Wesley Vieira & de Carvalho, Hélio Gomes & de Moura, Rafael Vignoli & de Francisco, Antonio Carlos & da Veiga, Claudimar Per, 2020. "Bibliometrics and systematic reviews: A comparison between the Proknow-C and the Methodi Ordinatio," Journal of Informetrics, Elsevier, vol. 14(3).
    4. Vivek Kumar Singh & Prashasti Singh & Mousumi Karmakar & Jacqueline Leta & Philipp Mayr, 2021. "The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 5113-5142, June.
    5. Alba Santa Soriano & Carolina Lorenzo Álvarez & Rosa María Torres Valdés, 2018. "Bibliometric analysis to identify an emerging research area: Public Relations Intelligence—a challenge to strengthen technological observatories in the network society," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(3), pages 1591-1614, June.
    6. Andrzej Lis & Agata Sudolska & Mateusz Tomanek, 2020. "Mapping Research on Sustainable Supply-Chain Management," Sustainability, MDPI, vol. 12(10), pages 1-26, May.
    7. Santos-Rojo, Cristina & Llopis-Amorós, Malar & García-García, Juan Manuel, 2023. "Overtourism and sustainability: A bibliometric study (2018–2021)," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    8. Michael Gusenbauer, 2022. "Search where you will find most: Comparing the disciplinary coverage of 56 bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2683-2745, May.
    9. Klarin, Anton & Inkizhinov, Boris & Nazarov, Dashi & Gorenskaia, Elena, 2021. "International business education: What we know and what we have yet to develop," International Business Review, Elsevier, vol. 30(5).
    10. Hugo Baier-Fuentes & José M. Merigó & José Ernesto Amorós & Magaly Gaviria-Marín, 2019. "International entrepreneurship: a bibliometric overview," International Entrepreneurship and Management Journal, Springer, vol. 15(2), pages 385-429, June.
    11. Raminta Pranckutė, 2021. "Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World," Publications, MDPI, vol. 9(1), pages 1-59, March.
    12. Jorge Alfredo Cerqueira-Streit & Gustavo Yuho Endo & Patricia Guarnieri & Luciano Batista, 2021. "Sustainable Supply Chain Management in the Route for a Circular Economy: An Integrative Literature Review," Logistics, MDPI, vol. 5(4), pages 1-21, November.
    13. Takaya Ogawa & Mizutomo Takeuchi & Yuya Kajikawa, 2018. "Analysis of Trends and Emerging Technologies in Water Electrolysis Research Based on a Computational Method: A Comparison with Fuel Cell Research," Sustainability, MDPI, vol. 10(2), pages 1-24, February.
    14. Gisleine Carmo & Luiz Flávio Felizardo & Valderí Castro Alcântara & Cristiane Aparecida Silva & José Willer Prado, 2023. "The impact of Jürgen Habermas’s scientific production: a scientometric review," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1853-1875, March.
    15. He, Pu & Mu, Yu-Tong & Park, Jae Wan & Tao, Wen-Quan, 2020. "Modeling of the effects of cathode catalyst layer design parameters on performance of polymer electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 277(C).
    16. Lutz Bornmann & Robin Haunschild & Sven E. Hug, 2018. "Visualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 427-437, February.
    17. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    18. Massimiliano M. Pellegrini & Riccardo Rialti & Giacomo Marzi & Andrea Caputo, 2020. "Sport entrepreneurship: A synthesis of existing literature and future perspectives," International Entrepreneurship and Management Journal, Springer, vol. 16(3), pages 795-826, September.
    19. Carolinne Secco & Maria Eduarda Kounaris Fuziki & Angelo Marcelo Tusset & Giane Gonçalves Lenzi, 2023. "Reactive Processes for H 2 S Removal," Energies, MDPI, vol. 16(4), pages 1-14, February.
    20. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6682-:d:290935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.