IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p6183-d283860.html
   My bibliography  Save this article

Uncertain Hybrid Multiple Attribute Group Decision of Offshore Wind Power Transmission Mode Based on theVIKOR Method

Author

Listed:
  • Nansheng Pang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Wenjing Guo

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

With the increasing scale of offshore wind power, large-capacity and long-distance offshore wind power will be a trend in the future development of wind power. However, compared with onshore wind power transmission, offshore wind power transmission is more difficult and costly. Therefore, it is of great practical significance and urgency to select the appropriate power transmission mode to realize the long-distance transmission of large-capacity offshore wind power. Since the selection of offshore wind power transmission mode is a multiple attribute decision making problem, in this paper, the technical characteristics of high voltage alternating current (HVAC) and voltage source converter based on high voltage direct current (VSC-HVDC) that are already in use and hybrid HVDC that is possible to be used in offshore wind power transmission in the future are discussed. Based on this analysis, the reliability, economy and construction difficulty of offshore wind power transmission mode are systematically analyzed, and VIKOR method is applied to group decision-making for the selection of offshore wind power transmission mode. The main contributions of this paper are as follows: (1) the characteristics of large-capacity and long-distance offshore wind power transmission are studied, and the evaluation system with multiple indexes including a large number of qualitative indexes is constructed from the technical, economic and social aspects. In order to deal with difficult problems of fuzzy information, interval numbers, language variables, intuitionistic fuzzy numbers and other data types are used to deal with them effectively. (2) In the VIKOR method, because the expert weights are unknown in group decision-making, the expert trust function is used to objectively determine the weight of each expert. (3) The group decision-making analysis of actual case of offshore wind power plant is carried out by using expert knowledge and VIKOR method. The case shows that this method is simple, reasonable and practical.

Suggested Citation

  • Nansheng Pang & Wenjing Guo, 2019. "Uncertain Hybrid Multiple Attribute Group Decision of Offshore Wind Power Transmission Mode Based on theVIKOR Method," Sustainability, MDPI, vol. 11(21), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6183-:d:283860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/6183/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/6183/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gupta, Himanshu, 2018. "Evaluating service quality of airline industry using hybrid best worst method and VIKOR," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 35-47.
    2. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2007. "Extended VIKOR method in comparison with outranking methods," European Journal of Operational Research, Elsevier, vol. 178(2), pages 514-529, April.
    3. Korompili, Asimenia & Wu, Qiuwei & Zhao, Haoran, 2016. "Review of VSC HVDC connection for offshore wind power integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1405-1414.
    4. Wu, Jie & Wang, Zhi-Xin & Xu, Lie & Wang, Guo-Qiang, 2014. "Key technologies of VSC-HVDC and its application on offshore wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 247-255.
    5. Pierri, Erika & Binder, Ole & Hemdan, Nasser G.A. & Kurrat, Michael, 2017. "Challenges and opportunities for a European HVDC grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 427-456.
    6. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    7. Kalair, A. & Abas, N. & Khan, N., 2016. "Comparative study of HVAC and HVDC transmission systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1653-1675.
    8. Perveen, Rehana & Kishor, Nand & Mohanty, Soumya R., 2014. "Off-shore wind farm development: Present status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 780-792.
    9. Shojaei, Payam & Seyed Haeri, Seyed Amin & Mohammadi, Sahar, 2018. "Airports evaluation and ranking model using Taguchi loss function, best-worst method and VIKOR technique," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 4-13.
    10. Benasla, Mokhtar & Allaoui, Tayeb & Brahami, Mostefa & Denaï, Mouloud & Sood, Vijay K., 2018. "HVDC links between North Africa and Europe: Impacts and benefits on the dynamic performance of the European system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3981-3991.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jong Hyen Kim & Byeong Seok Ahn, 2020. "The Hierarchical VIKOR Method with Incomplete Information: Supplier Selection Problem," Sustainability, MDPI, vol. 12(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    2. Ardelean, Mircea & Minnebo, Philip, 2023. "The suitability of seas and shores for building submarine power interconnections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Tarek Abedin & M. Shahadat Hossain Lipu & Mahammad A. Hannan & Pin Jern Ker & Safwan A. Rahman & Chong Tak Yaw & Sieh K. Tiong & Kashem M. Muttaqi, 2021. "Dynamic Modeling of HVDC for Power System Stability Assessment: A Review, Issues, and Recommendations," Energies, MDPI, vol. 14(16), pages 1-25, August.
    4. Liuming Jing & Dae-Hee Son & Sang-Hee Kang & Soon-Ryul Nam, 2017. "Unsynchronized Phasor-Based Protection Method for Single Line-to-Ground Faults in an Ungrounded Offshore Wind Farm with Fully-Rated Converters-Based Wind Turbines," Energies, MDPI, vol. 10(4), pages 1-15, April.
    5. Yiğit Kazançoğlu & Muhittin Sağnak & Çisem Lafcı & Sunil Luthra & Anil Kumar & Caner Taçoğlu, 2021. "Big Data-Enabled Solutions Framework to Overcoming the Barriers to Circular Economy Initiatives in Healthcare Sector," IJERPH, MDPI, vol. 18(14), pages 1-21, July.
    6. Samanci, Simge & Didem Atalay, Kumru & Bahar Isin, Feride, 2021. "Focusing on the big picture while observing the concerns of both managers and passengers in the post-covid era," Journal of Air Transport Management, Elsevier, vol. 90(C).
    7. Xiaodong Li & Zheng Xu, 2021. "Feasibility Evaluation on Elimination of DC Filters for Line-Commutated Converter-Based High-Voltage Direct Current Projects in New Situations," Energies, MDPI, vol. 14(18), pages 1-16, September.
    8. Jiang, Sufan & Wu, Chuanshen & Gao, Shan & Pan, Guangsheng & Liu, Yu & Zhao, Xin & Wang, Sicheng, 2022. "Robust frequency risk-constrained unit commitment model for AC-DC system considering wind uncertainty," Renewable Energy, Elsevier, vol. 195(C), pages 395-406.
    9. Jiyang Wu & Qiang Li & Qian Chen & Guangqiang Peng & Jinyu Wang & Qiang Fu & Bo Yang, 2022. "Evaluation, Analysis and Diagnosis for HVDC Transmission System Faults via Knowledge Graph under New Energy Systems Construction: A Critical Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    10. Edson Bortoni & Zulcy de Souza & Augusto Viana & Helcio Villa-Nova & Ângelo Rezek & Luciano Pinto & Roberto Siniscalchi & Rafael Bragança & José Bernardes, 2019. "The Benefits of Variable Speed Operation in Hydropower Plants Driven by Francis Turbines," Energies, MDPI, vol. 12(19), pages 1-20, September.
    11. Shangen Tian & David Campos-Gaona & Vinícius A. Lacerda & Raymundo E. Torres-Olguin & Olimpo Anaya-Lara, 2020. "Novel Control Approach for a Hybrid Grid-Forming HVDC Offshore Transmission System," Energies, MDPI, vol. 13(7), pages 1-14, April.
    12. Li, Bei & Li, Jiangchen, 2021. "Probabilistic sizing of a low-carbon emission power system considering HVDC transmission and microgrid clusters," Applied Energy, Elsevier, vol. 304(C).
    13. Itiki, Rodney & Manjrekar, Madhav & Di Santo, Silvio Giuseppe & Machado, Luis Fernando M., 2020. "Technical feasibility of Japan-Taiwan-Philippines HVdc interconnector to the Asia Pacific Super Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Hannan, M.A. & Lipu, M.S. Hossain & Ker, Pin Jern & Begum, R.A. & Agelidis, Vasilios G. & Blaabjerg, F., 2019. "Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Chakraborty, Santonab & Ghosh, Sayantan & Sarker, Baneswar & Chakraborty, Shankar, 2020. "An integrated performance evaluation approach for the Indian international airports," Journal of Air Transport Management, Elsevier, vol. 88(C).
    16. Tanrıverdi, Gökhan & Ecer, Fatih & Durak, Mehmet Şahin, 2022. "Exploring factors affecting airport selection during the COVID-19 pandemic from air cargo carriers’ perspective through the triangular fuzzy Dombi-Bonferroni BWM methodology," Journal of Air Transport Management, Elsevier, vol. 105(C).
    17. Mi, Xiaomei & Tang, Ming & Liao, Huchang & Shen, Wenjing & Lev, Benjamin, 2019. "The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next?," Omega, Elsevier, vol. 87(C), pages 205-225.
    18. Orji, Ifeyinwa Juliet & Kusi-Sarpong, Simonov & Gupta, Himanshu & Okwu, Modestus, 2019. "Evaluating challenges to implementing eco-innovation for freight logistics sustainability in Nigeria," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 288-305.
    19. Liao, Shengli & Yang, Hualong & Liu, Benxi & Zhao, Hongye & Liu, Huan & Ma, Xiangyu & Wu, Huijun, 2022. "Daily peak-shaving model of cascade hydropower serving multi-grids considering an HVDC channel shared constraint," Renewable Energy, Elsevier, vol. 199(C), pages 112-122.
    20. Hyuk-Il Kwon & Yun-Sung Cho & Sang-Min Choi, 2020. "A Study on Optimal Power System Reinforcement Measures Following Renewable Energy Expansion," Energies, MDPI, vol. 13(22), pages 1-34, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6183-:d:283860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.