IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v36y2014icp247-255.html
   My bibliography  Save this article

Key technologies of VSC-HVDC and its application on offshore wind farm in China

Author

Listed:
  • Wu, Jie
  • Wang, Zhi-Xin
  • Xu, Lie
  • Wang, Guo-Qiang

Abstract

In recent years, wind power industry has been flourishing and in China the focus has been gradually shifted from land-based to offshore wind farms. There are many advantages for offshore wind farms, such as abundant wind energy reserves, high utilization of the wind turbine capacity, not taking up land resources and so on. As wind turbine technology improves, offshore wind farms have been expanding quickly and are located further away from the onshore grid. The power transmission problem has become one of the key issues for restricting the development of offshore wind farms. For example, the technology of high voltage direct current transmission based on voltage source converter (VSC-HVDC), suitable for long-distance transmission of offshore wind energy, has become one of the current research focuses. This has resulted in higher requirements on the aspects of converter voltage level, system dynamic performance, and network power quality. The paper first discusses converter topology for offshore wind farm grid integration. Two VSC-HVDC projects for connecting offshore wind farms, which are located in Shanghai and Dalian of China, are presented in detail. Based on the two projects, the structure, control methods and application of modular multi-level converter are presented. The control strategies of VSC-HVDC are then discussed, focusing on double closed-loop vector control, direct power control, deadbeat control and the control methods for unbalanced grid voltage. This can provide good theoretical foundation for the grid integration of large offshore wind farms.

Suggested Citation

  • Wu, Jie & Wang, Zhi-Xin & Xu, Lie & Wang, Guo-Qiang, 2014. "Key technologies of VSC-HVDC and its application on offshore wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 247-255.
  • Handle: RePEc:eee:rensus:v:36:y:2014:i:c:p:247-255
    DOI: 10.1016/j.rser.2014.04.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114002998
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.04.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eltawil, Mohamed A. & Zhao, Zhengming, 2010. "Grid-connected photovoltaic power systems: Technical and potential problems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 112-129, January.
    2. Ortega, R. & Figueres, E. & Garcerá, G. & Trujillo, C.L. & Velasco, D., 2012. "Control techniques for reduction of the total harmonic distortion in voltage applied to a single-phase inverter with nonlinear loads: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1754-1761.
    3. Kaygusuz, Kamil, 2012. "Energy for sustainable development: A case of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1116-1126.
    4. Borges, Carmen Lucia Tancredo, 2012. "An overview of reliability models and methods for distribution systems with renewable energy distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4008-4015.
    5. Nema, Pragya & Nema, R.K. & Rangnekar, Saroj, 2009. "A current and future state of art development of hybrid energy system using wind and PV-solar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2096-2103, October.
    6. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    7. Domínguez-García, José Luis & Gomis-Bellmunt, Oriol & Bianchi, Fernando D. & Sumper, Andreas, 2012. "Power oscillation damping supported by wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4994-5006.
    8. Zhixin, Wang & Chuanwen, Jiang & Qian, Ai & Chengmin, Wang, 2009. "The key technology of offshore wind farm and its new development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 216-222, January.
    9. Li, Yong & Liu, Fang & Rehtanz, Christian & Luo, Longfu & Cao, Yijia, 2012. "Dynamic output-feedback wide area damping control of HVDC transmission considering signal time-varying delay for stability enhancement of interconnected power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5747-5759.
    10. Mousazadeh, Hossein & Keyhani, Alireza & Javadi, Arzhang & Mobli, Hossein & Abrinia, Karen & Sharifi, Ahmad, 2009. "A review of principle and sun-tracking methods for maximizing solar systems output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1800-1818, October.
    11. Monfared, Mohammad & Golestan, Saeed, 2012. "Control strategies for single-phase grid integration of small-scale renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4982-4993.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Jiang & Yanfeng Gong & Yan Li, 2018. "Fault Detection and Location of IGBT Short-Circuit Failure in Modular Multilevel Converters," Energies, MDPI, vol. 11(6), pages 1-13, June.
    2. He, Zheng-Xia & Xu, Shi-Chun & Shen, Wen-Xing & Zhang, Hui & Long, Ru-Yin & Yang, He & Chen, Hong, 2016. "Review of factors affecting China’s offshore wind power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1372-1386.
    3. Nansheng Pang & Wenjing Guo, 2019. "Uncertain Hybrid Multiple Attribute Group Decision of Offshore Wind Power Transmission Mode Based on theVIKOR Method," Sustainability, MDPI, vol. 11(21), pages 1-21, November.
    4. Ebrahim, M.A. & Ahmed, M.N. & Ramadan, H.S. & Becherif, M. & Zhao, J., 2021. "Optimal metaheuristic-based sliding mode control of VSC-HVDC transmission systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 178-193.
    5. Binkai, Jiang & Zhixin, Wang, 2016. "The key technologies of VSC-MTDC and its application in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 297-304.
    6. Zhang, Yuhan & Wang, Shunliang & Liu, Tianqi & Zhang, Shu & Lu, Qingyuan, 2021. "A traveling-wave-based protection scheme for the bipolar voltage source converter based high voltage direct current (VSC-HVDC) transmission lines in renewable energy integration," Energy, Elsevier, vol. 216(C).
    7. Li, Yang & Li, Yahui & Li, Guoqing & Zhao, Dongbo & Chen, Chen, 2018. "Two-stage multi-objective OPF for AC/DC grids with VSC-HVDC: Incorporating decisions analysis into optimization process," Energy, Elsevier, vol. 147(C), pages 286-296.
    8. Tsai, Yu-Ching & Huang, Yu-Fen & Yang, Jing-Tang, 2016. "Strategies for the development of offshore wind technology for far-east countries – A point of view from patent analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 182-194.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
    2. Justo, Jackson John & Mwasilu, Francis & Lee, Ju & Jung, Jin-Woo, 2013. "AC-microgrids versus DC-microgrids with distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 387-405.
    3. Zeb, Kamran & Uddin, Waqar & Khan, Muhammad Adil & Ali, Zunaib & Ali, Muhammad Umair & Christofides, Nicholas & Kim, H.J., 2018. "A comprehensive review on inverter topologies and control strategies for grid connected photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1120-1141.
    4. Yanine, Franco Fernando & Caballero, Federico I. & Sauma, Enzo E. & Córdova, Felisa M., 2014. "Homeostatic control, smart metering and efficient energy supply and consumption criteria: A means to building more sustainable hybrid micro-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 235-258.
    5. Nghitevelekwa, K. & Bansal, R.C., 2018. "A review of generation dispatch with large-scale photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 615-624.
    6. Wu, Jie & Wang, Zhi-Xin & Wang, Guo-Qiang, 2014. "The key technologies and development of offshore wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 453-462.
    7. Yanine, Franco F. & Sauma, Enzo E., 2013. "Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 60-95.
    8. Kamran Zeb & Imran Khan & Waqar Uddin & Muhammad Adil Khan & P. Sathishkumar & Tiago Davi Curi Busarello & Iftikhar Ahmad & H. J. Kim, 2018. "A Review on Recent Advances and Future Trends of Transformerless Inverter Structures for Single-Phase Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 11(8), pages 1-34, July.
    9. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    10. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    11. Jung, Jaesung & Onen, Ahmet & Russell, Kevin & Broadwater, Robert P., 2015. "Local steady-state and quasi steady-state impact studies of high photovoltaic generation penetration in power distribution circuits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 569-583.
    12. Luthra, Sunil & Mangla, Sachin Kumar & Kharb, Ravinder K., 2015. "Sustainable assessment in energy planning and management in Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 58-73.
    13. Mohd.Ali, Jagabar Sathik & Krishnaswamy, Vijayakumar, 2018. "An assessment of recent multilevel inverter topologies with reduced power electronics components for renewable applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3379-3399.
    14. Ali Bughneda & Mohamed Salem & Anna Richelli & Dahaman Ishak & Salah Alatai, 2021. "Review of Multilevel Inverters for PV Energy System Applications," Energies, MDPI, vol. 14(6), pages 1-23, March.
    15. Asrari, Arash & Ghasemi, Abolfazl & Javidi, Mohammad Hossein, 2012. "Economic evaluation of hybrid renewable energy systems for rural electrification in Iran—A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3123-3130.
    16. Tsuanyo, David & Azoumah, Yao & Aussel, Didier & Neveu, Pierre, 2015. "Modeling and optimization of batteryless hybrid PV (photovoltaic)/Diesel systems for off-grid applications," Energy, Elsevier, vol. 86(C), pages 152-163.
    17. Taghvaee, M.H. & Radzi, M.A.M. & Moosavain, S.M. & Hizam, Hashim & Hamiruce Marhaban, M., 2013. "A current and future study on non-isolated DC–DC converters for photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 216-227.
    18. Jordehi, A. Rezaee, 2015. "Optimisation of electric distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1088-1100.
    19. Islam, Monirul & Mekhilef, Saad & Hasan, Mahamudul, 2015. "Single phase transformerless inverter topologies for grid-tied photovoltaic system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 69-86.
    20. Elibol, Erdem & Özmen, Özge Tüzün & Tutkun, Nedim & Köysal, Oğuz, 2017. "Outdoor performance analysis of different PV panel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 651-661.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:36:y:2014:i:c:p:247-255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.