IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5197-d269674.html
   My bibliography  Save this article

Design of An Integration Model for Air Cargo Transportation Network Design and Flight Route Selection

Author

Listed:
  • Carman K.M. Lee

    (Department of Industrial Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China)

  • Shuzhu Zhang

    (Department of Information Management and Engineering, Zhejiang University of Finance & Economics, Hangzhou 310018, China)

  • Kam K.H. Ng

    (Department of Industrial Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China)

Abstract

Air cargo transportation is an essential component in the freight transportation market, primarily due to the transportation requirements of time-sensitive products. Air cargo transportation plays an increasingly important role alongside economic development. Cargo flight network design and fleet routing selection significantly affect the performance of the air cargo transportation. In this research, we propose an integrated model simultaneously considering cargo flight network design and the fleet routing selection for the air cargo transportation. Two transportation modes, the direct transportation mode in point-to-point networks and the transshipment mode in hub-and-spoke networks, are compared. In order to solve the proposed optimization problem, a swarm-intelligence-based algorithm is adapted. Numerical experiments were conducted to examine and validate the effectiveness and efficiency of the proposed model and algorithm. The computational results suggest that the proper settings of hub and transshipment route selection in an air cargo transportation network can significantly reduce the transportation cost, which can provide practical managerial insights for the air cargo transportation industry.

Suggested Citation

  • Carman K.M. Lee & Shuzhu Zhang & Kam K.H. Ng, 2019. "Design of An Integration Model for Air Cargo Transportation Network Design and Flight Route Selection," Sustainability, MDPI, vol. 11(19), pages 1-12, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5197-:d:269674
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hee Kyung Kim & Chang Won Lee, 2019. "Development of a Cost Forecasting Model for Air Cargo Service Delay Due to Low Visibility," Sustainability, MDPI, vol. 11(16), pages 1-14, August.
    2. O'Kelly, M. E. & Bryan, D. L., 1998. "Hub location with flow economies of scale," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 605-616, November.
    3. Yan, Shangyao & Chen, Shin-Chin & Chen, Chia-Hung, 2006. "Air cargo fleet routing and timetable setting with multiple on-time demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(5), pages 409-430, September.
    4. Hyun Kim, 2012. "P-hub protection models for survivable hub network design," Journal of Geographical Systems, Springer, vol. 14(4), pages 437-461, October.
    5. Ohashi, Hiroshi & Kim, Tae-Seung & Oum, Tae Hoon & Yu, Chunyan, 2005. "Choice of air cargo transshipment airport: an application to air cargo traffic to/from Northeast Asia," Journal of Air Transport Management, Elsevier, vol. 11(3), pages 149-159.
    6. Lin, Cheng-Chang & Chen, Sheu-Hua, 2008. "An integral constrained generalized hub-and-spoke network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(6), pages 986-1003, November.
    7. Lange, Anne, 2019. "Does cargo matter? The impact of air cargo operations on departure on-time performance for combination carriers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 214-223.
    8. Turgut Aykin, 1995. "Networking Policies for Hub-and-Spoke Systems with Application to the Air Transportation System," Transportation Science, INFORMS, vol. 29(3), pages 201-221, August.
    9. Hong, Seock-Jin & Randall, Wesley & Han, Keunsoo & Malhan, Amit Sundeep, 2018. "Estimation viability of dedicated freighter aircraft of combination carriers: A data envelopment and principal component analysis," International Journal of Production Economics, Elsevier, vol. 202(C), pages 12-20.
    10. Kim, Joong Yup & Park, Yonghwa, 2012. "Connectivity analysis of transshipments at a cargo hub airport," Journal of Air Transport Management, Elsevier, vol. 18(1), pages 12-15.
    11. Kasilingam, R. G., 1997. "Air cargo revenue management: Characteristics and complexities," European Journal of Operational Research, Elsevier, vol. 96(1), pages 36-44, January.
    12. Oktal, Hakan & Ozger, Asuman, 2013. "Hub location in air cargo transportation: A case study," Journal of Air Transport Management, Elsevier, vol. 27(C), pages 1-4.
    13. Lin, Cheng-Chang & Lin, Yu-Jen & Lin, Dung-Ying, 2003. "The economic effects of center-to-center directs on hub-and-spoke networks for air express common carriers," Journal of Air Transport Management, Elsevier, vol. 9(4), pages 255-265.
    14. Suwanwong, Tipavinee & Sopadang, Apichat & Hanaoka, Shinya & Rodbundith, Treephis, 2018. "Evaluation of air cargo connectivity and policy in Thailand," Transport Policy, Elsevier, vol. 72(C), pages 24-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dabin Xue & Kam K. H. Ng & Li-Ta Hsu, 2020. "Multi-Objective Flight Altitude Decision Considering Contrails, Fuel Consumption and Flight Time," Sustainability, MDPI, vol. 12(15), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hee Kyung Kim & Chang Won Lee, 2019. "Development of a Cost Forecasting Model for Air Cargo Service Delay Due to Low Visibility," Sustainability, MDPI, vol. 11(16), pages 1-14, August.
    2. Choi, Jong Hae, 2023. "The value of time and the impact on the air freight product portfolio - A study of the South Korean market 2017–2021," Journal of Air Transport Management, Elsevier, vol. 109(C).
    3. Yu, Shunan & Yang, Zhongzhen & Yu, Bin, 2017. "Air express network design based on express path choices – Chinese case study," Journal of Air Transport Management, Elsevier, vol. 61(C), pages 73-80.
    4. Dhyani, Sneha & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2019. "Alternate Second Order Conic Programming Reformulations for Hub Location with Capacity Selection under Demand," IIMA Working Papers WP 2018-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    5. Chao, Ching-Cheng & Yu, Po-Cheng, 2013. "Quantitative evaluation model of air cargo competitiveness and comparative analysis of major Asia-Pacific airports," Transport Policy, Elsevier, vol. 30(C), pages 318-326.
    6. Ricardo Saraiva de Camargo & Gilberto de Miranda & Henrique Pacca L. Luna, 2009. "Benders Decomposition for Hub Location Problems with Economies of Scale," Transportation Science, INFORMS, vol. 43(1), pages 86-97, February.
    7. Samir Elhedhli & Huyu Wu, 2010. "A Lagrangean Heuristic for Hub-and-Spoke System Design with Capacity Selection and Congestion," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 282-296, May.
    8. Martina Jakara & Nikolina Brnjac, 2023. "Foliated Transport Networks in Intermodal Freight Transport," Sustainability, MDPI, vol. 15(9), pages 1-13, April.
    9. Mehmet R. Taner & Bahar Y. Kara, 2016. "Endogenous Effects of Hubbing on Flow Intensities," Networks and Spatial Economics, Springer, vol. 16(4), pages 1151-1181, December.
    10. Delgado, Felipe & Sirhan, Cristóbal & Katscher, Mathias & Larrain, Homero, 2020. "Recovering from demand disruptions on an air cargo network," Journal of Air Transport Management, Elsevier, vol. 85(C).
    11. Yeo, Gi-Tae & Wang, Ying & Chou, Chien-Chang, 2013. "Evaluating the competitiveness of the aerotropolises in East Asia," Journal of Air Transport Management, Elsevier, vol. 32(C), pages 24-31.
    12. Jeong, Seung-Ju & Lee, Chi-Guhn & Bookbinder, James H., 2007. "The European freight railway system as a hub-and-spoke network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(6), pages 523-536, July.
    13. Taherkhani, Gita & Alumur, Sibel A., 2019. "Profit maximizing hub location problems," Omega, Elsevier, vol. 86(C), pages 1-15.
    14. Bo Feng & Jixin Zhao & Zheyu Jiang, 2022. "Robust pricing for airlines with partial information," Annals of Operations Research, Springer, vol. 310(1), pages 49-87, March.
    15. Trung Hieu Tran & Jesse R. O’Hanley & M. Paola Scaparra, 2017. "Reliable Hub Network Design: Formulation and Solution Techniques," Transportation Science, INFORMS, vol. 51(1), pages 358-375, February.
    16. Azizi, Nader & Salhi, Said, 2022. "Reliable hub-and-spoke systems with multiple capacity levels and flow dependent discount factor," European Journal of Operational Research, Elsevier, vol. 298(3), pages 834-854.
    17. Yaman, Hande, 2011. "Allocation strategies in hub networks," European Journal of Operational Research, Elsevier, vol. 211(3), pages 442-451, June.
    18. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    19. Lázaro Florido-Benítez, 2023. "The Role of the Top 50 US Cargo Airports and 25 Air Cargo Airlines in the Logistics of E-Commerce Companies," Logistics, MDPI, vol. 7(1), pages 1-27, February.
    20. Hong, Seock-Jin & Kim, Woongyi & Niranjan, Suman, 2023. "Challenges to the air cargo business of combination carriers: Analysis of two major Korean Airlines," Journal of Air Transport Management, Elsevier, vol. 108(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5197-:d:269674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.