IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i18p5047-d267534.html
   My bibliography  Save this article

Threshold Electricity Consumption Enables Multiple Sustainable Development Goals

Author

Listed:
  • Robert J. Brecha

    (Physics Department and Renewable and Clean Energy Program, University of Dayton, Dayton, OH 45469, USA
    Hanley Sustainability Institute, University of Dayton, Dayton, OH 45469, USA
    Climate Analytics, Ritterstrasse 3, 10969 Berlin, Germany)

Abstract

Access to sufficient amounts of energy is a prerequisite for the development of human well-being. The Sustainable Development Goals (SDGs) recognize the interconnectedness of climate change, energy access and development. However, not all SDG targets are quantified, leaving room for ambiguity in fulfilling, for example, the goal of ensuring access to affordable, reliable, sustainable and modern energy for all (SDG7). We show how specific sustainable development targets for health indicators are strongly correlated with electricity consumption levels in the poorest of countries. Clear thresholds in per capita electricity consumption of a few hundred kWh per year are identified by analyzing SDG indicator data as a function of per capita country electricity consumption. Those thresholds are strongly correlated with meeting of SDG 3 targets-below the identified thresholds, countries do not meet the SDG targets, while above the threshold there is a clear relationship between increasing consumption of electricity and improvement of SDG indicators. Electricity consumption of 400 kWh per capita is significantly higher than projections made by international agencies for future energy access, but only 5%–10% that of OECD countries. At the very least, the presence of thresholds and historical data patterns requires an understanding of how SDG targets would be met in the absence of this threshold level of electricity access.

Suggested Citation

  • Robert J. Brecha, 2019. "Threshold Electricity Consumption Enables Multiple Sustainable Development Goals," Sustainability, MDPI, vol. 11(18), pages 1-11, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5047-:d:267534
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/18/5047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/18/5047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Setu Pelz & Shonali Pachauri & Sebastian Groh, 2018. "A critical review of modern approaches for multidimensional energy poverty measurement," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    2. Astrid Kander & Paolo Malanima & Paul Warde, 2013. "Power to the People: Energy in Europe over the Last Five Centuries," Economics Books, Princeton University Press, edition 1, number 10138.
    3. Peter G. Taylor & Kathleen Abdalla & Roberta Quadrelli & Ivan Vera, 2017. "Better energy indicators for sustainable development," Nature Energy, Nature, vol. 2(8), pages 1-4, August.
    4. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    5. David I. Stern and Astrid Kander, 2012. "The Role of Energy in the Industrial Revolution and Modern Economic Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Carnegie LaBelle & Géza Tóth & Tekla Szép, 2022. "Not Fit for 55: Prioritizing Human Well-Being in Residential Energy Consumption in the European Union," Energies, MDPI, vol. 15(18), pages 1-25, September.
    2. Dilip Khatiwada & Pallav Purohit & Emmanuel Kofi Ackom, 2019. "Mapping Bioenergy Supply and Demand in Selected Least Developed Countries (LDCs): Exploratory Assessment of Modern Bioenergy’s Contribution to SDG7," Sustainability, MDPI, vol. 11(24), pages 1-29, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zsuzsanna Csereklyei, M. d. Mar Rubio-Varas, and David I. Stern, 2016. "Energy and Economic Growth: The Stylized Facts," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    2. Agovino, Massimiliano & Bartoletto, Silvana & Garofalo, Antonio, 2019. "Modelling the relationship between energy intensity and GDP for European countries: An historical perspective (1800–2000)," Energy Economics, Elsevier, vol. 82(C), pages 114-134.
    3. Ravshonbek Otojanov & Roger Fouquet & Brigitte Granville, 2023. "Factor prices and induced technical change in the industrial revolution," Economic History Review, Economic History Society, vol. 76(2), pages 599-623, May.
    4. Kander, Astrid & Stern, David I., 2014. "Economic growth and the transition from traditional to modern energy in Sweden," Energy Economics, Elsevier, vol. 46(C), pages 56-65.
    5. Schlör, Holger & Venghaus, Sandra, 2022. "Measuring resilience in the food-energy-water nexus based on ethical values and trade relations," Applied Energy, Elsevier, vol. 323(C).
    6. James D Ward & Paul C Sutton & Adrian D Werner & Robert Costanza & Steve H Mohr & Craig T Simmons, 2016. "Is Decoupling GDP Growth from Environmental Impact Possible?," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-14, October.
    7. Saunders, Harry D. & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgupta, Shyamasree & De La Rue Du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Lin, Boqiang, 2021. "Energy efficiency: what has research delivered in the last 40 years?," LSE Research Online Documents on Economics 114344, London School of Economics and Political Science, LSE Library.
    8. Christopher Kennedy, 2020. "Energy and capital," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1047-1058, October.
    9. Victor Court, 2018. "Energy Capture, Technological Change, and Economic Growth: An Evolutionary Perspective," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-27, September.
    10. Nielsen, Hana, 2021. "Coal and Sugar: The Black and White Gold of Czech Industrialization (1841-1863)," Lund Papers in Economic History 229, Lund University, Department of Economic History.
    11. van de Ven, Dirk Jan & Fouquet, Roger, 2017. "Historical energy price shocks and their changing effects on the economy," Energy Economics, Elsevier, vol. 62(C), pages 204-216.
    12. Christopher Kennedy, 2021. "A biophysical model of the industrial revolution," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 663-676, June.
    13. Ruta Gentvilaite & Astrid Kander & Paul Warde, 2014. "The Role of Energy Quality in Shaping Long-Term Energy Intensity in Europe," Energies, MDPI, vol. 8(1), pages 1-21, December.
    14. Bertheau, Paul, 2020. "Supplying not electrified islands with 100% renewable energy based micro grids: A geospatial and techno-economic analysis for the Philippines," Energy, Elsevier, vol. 202(C).
    15. Paulina Schiappacasse & Bernhard Müller & Le Thuy Linh, 2019. "Towards Responsible Aggregate Mining in Vietnam," Resources, MDPI, vol. 8(3), pages 1-15, August.
    16. Pina Puntillo, 2023. "Circular economy business models: Towards achieving sustainable development goals in the waste management sector—Empirical evidence and theoretical implications," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(2), pages 941-954, March.
    17. Santos, João & Domingos, Tiago & Sousa, Tânia & St. Aubyn, Miguel, 2016. "Does a small cost share reflect a negligible role for energy in economic production? Testing for aggregate production functions including capital, labor, and useful exergy through a cointegration-base," MPRA Paper 70850, University Library of Munich, Germany.
    18. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    19. Jean-Louis Combes & Alexandru Minea & Pegdéwendé Nestor Sawadogo, 2019. "Assessing the effects of combating illicit financial flows on domestic tax revenue mobilization in developing countries," CERDI Working papers halshs-02019073, HAL.
    20. Bezerra, Paula & Cruz, Talita & Mazzone, Antonella & Lucena, André F.P. & De Cian, Enrica & Schaeffer, Roberto, 2022. "The multidimensionality of energy poverty in Brazil: A historical analysis," Energy Policy, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5047-:d:267534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.