IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i13p3703-d246108.html
   My bibliography  Save this article

Solar Photovoltaic Electricity Generation: A Lifeline for the European Coal Regions in Transition

Author

Listed:
  • Katalin Bódis

    (European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, I-21027 Ispra (VA), Italy)

  • Ioannis Kougias

    (European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, I-21027 Ispra (VA), Italy)

  • Nigel Taylor

    (European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, I-21027 Ispra (VA), Italy)

  • Arnulf Jäger-Waldau

    (European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, I-21027 Ispra (VA), Italy)

Abstract

The use of coal for electricity generation is the main emitter of Greenhous Gas Emissions worldwide. According to the International Energy Agency, these emissions have to be reduced by more than 70% by 2040 to stay on track for the 1.5–2 °C scenario suggested by the Paris Agreement. To ensure a socially fair transition towards the phase-out of coal, the European Commission introduced the Coal Regions in Transition initiative in late 2017. The present paper analyses to what extent the use of photovoltaic electricity generation systems can help with this transition in the coal regions of the European Union (EU). A spatially explicit methodology was developed to assess the solar photovoltaic (PV) potential in selected regions where open-cast coal mines are planned to cease operation in the near future. Different types of solar PV systems were considered including ground-mounted systems developed either on mining land or its surroundings. Furthermore, the installation of rooftop solar PV systems on the existing building stock was also analysed. The obtained results show that the available area in those regions is abundant and that solar PV systems could fully substitute the current electricity generation of coal-fired power plants in the analysed regions.

Suggested Citation

  • Katalin Bódis & Ioannis Kougias & Nigel Taylor & Arnulf Jäger-Waldau, 2019. "Solar Photovoltaic Electricity Generation: A Lifeline for the European Coal Regions in Transition," Sustainability, MDPI, vol. 11(13), pages 1-14, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3703-:d:246108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/13/3703/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/13/3703/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Szabó, Sándor & Jäger-Waldau, Arnulf, 2008. "More competition: Threat or chance for financing renewable electricity?," Energy Policy, Elsevier, vol. 36(4), pages 1436-1447, April.
    2. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    3. Jinyoung Song & Yosoon Choi, 2016. "Analysis of the Potential for Use of Floating Photovoltaic Systems on Mine Pit Lakes: Case Study at the Ssangyong Open-Pit Limestone Mine in Korea," Energies, MDPI, vol. 9(2), pages 1-13, February.
    4. Kougias, Ioannis & Szabó, Sándor & Monforti-Ferrario, Fabio & Huld, Thomas & Bódis, Katalin, 2016. "A methodology for optimization of the complementarity between small-hydropower plants and solar PV systems," Renewable Energy, Elsevier, vol. 87(P2), pages 1023-1030.
    5. Jochen Markard, 2018. "The next phase of the energy transition and its implications for research and policy," Nature Energy, Nature, vol. 3(8), pages 628-633, August.
    6. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Yosoon Choi & Jinyoung Song, 2016. "Sustainable Development of Abandoned Mine Areas Using Renewable Energy Systems: A Case Study of the Photovoltaic Potential Assessment at the Tailings Dam of Abandoned Sangdong Mine, Korea," Sustainability, MDPI, vol. 8(12), pages 1-12, December.
    8. Szabó, Sándor & Bódis, Katalin & Kougias, Ioannis & Moner-Girona, Magda & Jäger-Waldau, Arnulf & Barton, Gábor & Szabó, László, 2017. "A methodology for maximizing the benefits of solar landfills on closed sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1291-1300.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stognief, Nora & Walk, Paula & Schöttker, Oliver & Oei, Pao-Yu, 2019. "Economic Resilience of German Lignite Regions in Transition," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(21).
    2. Arnulf Jäger-Waldau, 2020. "The Untapped Area Potential for Photovoltaic Power in the European Union," Clean Technol., MDPI, vol. 2(4), pages 1-7, October.
    3. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Aleksander Frejowski & Jan Bondaruk & Adam Duda, 2021. "Challenges and Opportunities for End-of-Life Coal Mine Sites: Black-to-Green Energy Approach," Energies, MDPI, vol. 14(5), pages 1-18, March.
    5. Jäger-Waldau, Arnulf & Kougias, Ioannis & Taylor, Nigel & Thiel, Christian, 2020. "How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    6. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 196.
    7. Kougias, Ioannis & Taylor, Nigel & Kakoulaki, Georgia & Jäger-Waldau, Arnulf, 2021. "The role of photovoltaics for the European Green Deal and the recovery plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Amjad Ali & Kashif Irshad & Mohammad Farhan Khan & Md Moinul Hossain & Ibrahim N. A. Al-Duais & Muhammad Zeeshan Malik, 2021. "Artificial Intelligence and Bio-Inspired Soft Computing-Based Maximum Power Plant Tracking for a Solar Photovoltaic System under Non-Uniform Solar Irradiance Shading Conditions—A Review," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    9. Prăvălie, Remus & Sîrodoev, Igor & Ruiz-Arias, José & Dumitraşcu, Monica, 2022. "Using renewable (solar) energy as a sustainable management pathway of lands highly sensitive to degradation in Romania. A countrywide analysis based on exploring the geographical and technical solar p," Renewable Energy, Elsevier, vol. 193(C), pages 976-990.
    10. Stanley Semelane, & Nnamdi Nwulu, & Njabulo Kambule, & Henerica Tazvinga,, 2021. "Evaluating available solar photovoltaic business opportunities in coal phase-out regions – An energy transition case of Steve Tshwete local municipality in South Africa," Energy Policy, Elsevier, vol. 155(C).
    11. Anatoli Chatzipanagi & Arnulf Jäger-Waldau, 2023. "The European Solar Communication—Will It Pave the Road to Achieve 1 TW of Photovoltaic System Capacity in the European Union by 2030?," Sustainability, MDPI, vol. 15(8), pages 1-10, April.
    12. Alexandros Kafetzis & Michael Bampaou & Giorgos Kardaras & Kyriakos Panopoulos, 2023. "Decarbonization of Former Lignite Regions with Renewable Hydrogen: The Western Macedonia Case," Energies, MDPI, vol. 16(20), pages 1-21, October.
    13. Amjad Ali & K. Almutairi & Muhammad Zeeshan Malik & Kashif Irshad & Vineet Tirth & Salem Algarni & Md. Hasan Zahir & Saiful Islam & Md Shafiullah & Neeraj Kumar Shukla, 2020. "Review of Online and Soft Computing Maximum Power Point Tracking Techniques under Non-Uniform Solar Irradiation Conditions," Energies, MDPI, vol. 13(12), pages 1-37, June.
    14. Kustova, Irina & Egenhofer, Christian & N��ez Ferrer, Jorge & Popov, Julian, 2021. "From coal to low carbon: Coal region development opportunities under EU Recovery programmes," CEPS Papers 32801, Centre for European Policy Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    2. Mokhinabonu Mardonova & Yosoon Choi, 2019. "Assessment of Photovoltaic Potential of Mining Sites in Uzbekistan," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    3. Jangwon Suh & Yonghae Jang & Yosoon Choi, 2019. "Comparison of Electric Power Output Observed and Estimated from Floating Photovoltaic Systems: A Case Study on the Hapcheon Dam, Korea," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
    4. Jäger-Waldau, Arnulf & Kougias, Ioannis & Taylor, Nigel & Thiel, Christian, 2020. "How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    5. Jangwon Suh & Yosoon Choi, 2017. "Methods for Converting Monthly Total Irradiance Data into Hourly Data to Estimate Electric Power Production from Photovoltaic Systems: A Comparative Study," Sustainability, MDPI, vol. 9(7), pages 1-19, July.
    6. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    7. Claus, R. & López, M., 2022. "Key issues in the design of floating photovoltaic structures for the marine environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Kougias, Ioannis & Taylor, Nigel & Kakoulaki, Georgia & Jäger-Waldau, Arnulf, 2021. "The role of photovoltaics for the European Green Deal and the recovery plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Sisi Que & Liang Wang & Kwame Awuah-Offei & Yao Chen & Wei Yang, 2018. "The Status of the Local Community in Mining Sustainable Development beyond the Triple Bottom Line," Sustainability, MDPI, vol. 10(6), pages 1-11, May.
    10. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi & Vincenzo Stornelli, 2018. "Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis," Sustainability, MDPI, vol. 10(9), pages 1-29, August.
    11. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    12. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    13. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    14. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    15. Obsatar Sinaga & Mohd Haizam Mohd Saudi & Djoko Roespinoedji & Mohd Shahril Ahmad Razimi, 2019. "The Dynamic Relationship between Natural Gas and Economic Growth: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 388-394.
    16. Asongu, Simplice A. & Odhiambo, Nicholas M., 2021. "Inequality, finance and renewable energy consumption in Sub-Saharan Africa," Renewable Energy, Elsevier, vol. 165(P1), pages 678-688.
    17. Jurasz, Jakub & Beluco, Alexandre & Canales, Fausto A., 2018. "The impact of complementarity on power supply reliability of small scale hybrid energy systems," Energy, Elsevier, vol. 161(C), pages 737-743.
    18. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    19. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    20. Wan-Lin Yong & Jerome Kueh & Yong Sze Wei & Jang-Haw Tiang, 2020. "Energy Consumption and Economic Growth Nexus in China: Autoregressive Distributed Lag (ARDL)," Journal of Public Administration and Governance, Macrothink Institute, vol. 10(2), pages 194212-1942, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3703-:d:246108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.