IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p2006-d152421.html
   My bibliography  Save this article

Analysis, Evaluation and Optimization Strategy of China Thermal Power Enterprises’ Business Performance Considering Environmental Costs under the Background of Carbon Trading

Author

Listed:
  • Xiaohua Song

    (School of Economics and Management, North China Electric Power University, Changping, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Changping, Beijing 102206, China)

  • Xiao Jiang

    (School of Economics and Management, North China Electric Power University, Changping, Beijing 102206, China)

  • Xubei Zhang

    (School of Economics and Management, North China Electric Power University, Changping, Beijing 102206, China)

  • Jinpeng Liu

    (School of Economics and Management, North China Electric Power University, Changping, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Changping, Beijing 102206, China)

Abstract

With the development of China’s energy structure adjustment and energy conservation and emission reduction, China’s carbon trading market has been fully launched. As an important participant in the carbon trading market, thermal power enterprises that play a major role in China’s power supply structure may bear huge environmental cost pressures, including carbon transaction costs. Under such a circumstance, thermal power enterprises urgently need to ensure operating performance through environmental cost management. This article takes the thermal performance of Chinese thermal power companies under the background of carbon trading as the study object, designs a measurement method for the environmental costs of thermal power companies, and analyzes the influence mechanism of the environmental cost based on the principle of system dynamics. Relying on the correlation analysis between environmental costs and business performance of thermal power companies, the company’s business performance is evaluated by data envelopment analysis (DEA) efficiency. After reaching the study conclusion, the article proposes an optimization strategy for thermal enterprises to manage and control their environmental cost and business performance. This paper closely integrates the actual background of carbon trading, including carbon transaction costs into environmental costs, and conducts an econometric analysis. It constructs a composite measurement of environmental costs that accounts for carbon transaction costs and conducts performance evaluations of power generation companies based on factors such as environmental costs, which all has a certain degree of innovation.

Suggested Citation

  • Xiaohua Song & Xiao Jiang & Xubei Zhang & Jinpeng Liu, 2018. "Analysis, Evaluation and Optimization Strategy of China Thermal Power Enterprises’ Business Performance Considering Environmental Costs under the Background of Carbon Trading," Sustainability, MDPI, vol. 10(6), pages 1-27, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2006-:d:152421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/2006/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/2006/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei, Chu & Löschel, Andreas & Liu, Bing, 2015. "Energy-saving and emission-abatement potential of Chinese coal-fired power enterprise: A non-parametric analysis," Energy Economics, Elsevier, vol. 49(C), pages 33-43.
    2. Wang, Jinman & Wang, Ruogu & Zhu, Yucheng & Li, Jiayan, 2018. "Life cycle assessment and environmental cost accounting of coal-fired power generation in China," Energy Policy, Elsevier, vol. 115(C), pages 374-384.
    3. Lu, Chuanyi & Tong, Qing & Liu, Xuemei, 2010. "The impacts of carbon tax and complementary policies on Chinese economy," Energy Policy, Elsevier, vol. 38(11), pages 7278-7285, November.
    4. Xiong, Ling & Shen, Bo & Qi, Shaozhou & Price, Lynn & Ye, Bin, 2017. "The allowance mechanism of China’s carbon trading pilots: A comparative analysis with schemes in EU and California," Applied Energy, Elsevier, vol. 185(P2), pages 1849-1859.
    5. Jianjun Wang & Li Li & Fan Zhang & Qiannan Xu, 2014. "Carbon Emissions Abatement Cost in China: Provincial Panel Data Analysis," Sustainability, MDPI, vol. 6(5), pages 1-17, May.
    6. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "DEA approach for unified efficiency measurement: Assessment of Japanese fossil fuel power generation," Energy Economics, Elsevier, vol. 33(2), pages 292-303, March.
    7. Qian Zhou & Helmut Yabar & Takeshi Mizunoya & Yoshiro Higano, 2017. "Evaluation of Integrated Air Pollution and Climate Change Policies: Case Study in the Thermal Power Sector in Chongqing City, China," Sustainability, MDPI, vol. 9(10), pages 1-17, September.
    8. Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Irabien, Angel, 2012. "MINLP model for optimizing electricity production from coal-fired power plants considering carbon management," Energy Policy, Elsevier, vol. 51(C), pages 493-501.
    9. Li Li & Jianjun Wang, 2015. "The Effects of Coal Switching and Improvements in Electricity Production Efficiency and Consumption on CO 2 Mitigation Goals in China," Sustainability, MDPI, vol. 7(7), pages 1-20, July.
    10. Ramos-Real, Francisco Javier & Tovar, Beatriz & Iootty, Mariana & de Almeida, Edmar Fagundes & Pinto Jr., Helder Queiroz, 2009. "The evolution and main determinants of productivity in Brazilian electricity distribution 1998-2005: An empirical analysis," Energy Economics, Elsevier, vol. 31(2), pages 298-305, March.
    11. Olaru Olga & Radu Andreea Lorena & Banacu Cristian Silviu, 2012. "General Principles Regarding the Relationships Among the Environmental Cost Accounting, Environmental Performance Measurement and Eco-efficiency Indicators," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(2), pages 888-893, Decembre.
    12. Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2012. "Operational planning optimization of multiple interconnected steam power plants considering environmental costs," Energy, Elsevier, vol. 37(1), pages 549-561.
    13. Zhang, Da & Karplus, Valerie J. & Cassisa, Cyril & Zhang, Xiliang, 2014. "Emissions trading in China: Progress and prospects," Energy Policy, Elsevier, vol. 75(C), pages 9-16.
    14. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl Jr., 2010. "Toxic releases: An environmental performance index for coal-fired power plants," Energy Economics, Elsevier, vol. 32(1), pages 158-165, January.
    15. K. Stephen Haggard & Xiumin Martin & Raynolde Pereira, 2008. "Does Voluntary Disclosure Improve Stock Price Informativeness?," Financial Management, Financial Management Association International, vol. 37(4), pages 747-768, December.
    16. Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
    17. Qiming Li & Wenhuan Wang & Yiping Lou & Ke Cheng & Xiaoguang Yang, 2016. "Diversification and Corporate Performance: Evidence from China’s Listed Energy Companies," Sustainability, MDPI, vol. 8(10), pages 1-17, September.
    18. Braun, Marcel, 2009. "The evolution of emissions trading in the European Union - The role of policy networks, knowledge and policy entrepreneurs," Accounting, Organizations and Society, Elsevier, vol. 34(3-4), pages 469-487, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    2. Junwu Wang & Yinghui Song & Mao Li & Cong Yuan & Feng Guo, 2022. "Study on Low-Carbon Technology Innovation Strategies through Government–University–Enterprise Cooperation under Carbon Trading Policy," Sustainability, MDPI, vol. 14(15), pages 1-26, July.
    3. Sheng Xu & Jingxue Chen & Demei Wen, 2023. "Research on the Impact of Carbon Trading Policy on the Structural Upgrading of Marine Industry," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    4. Xiaolong Yang & Dongxiao Niu & Meng Chen & Keke Wang & Qian Wang & Xiaomin Xu, 2020. "An Operation Benefit Analysis and Decision Model of Thermal Power Enterprises in China against the Background of Large-Scale New Energy Consumption," Sustainability, MDPI, vol. 12(11), pages 1-19, June.
    5. Tao Li & Yunfen Guo & Liqi Yi & Tian Gao, 2022. "Environmental Performance Evaluation of New Type Thermal Power Enterprises Considering Carbon Peak and Neutrality," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    6. Tang, Chang & Qi, Yu & Khan, Naqib Ullah & Tang, Ruwei & Xue, Yan, 2023. "Ultra-low emission standards and corporate production performance: Evidence from Chinese thermal power companies," Energy Policy, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
    2. Liu, Yu & Tan, Xiu-Jie & Yu, Yang & Qi, Shao-Zhou, 2017. "Assessment of impacts of Hubei Pilot emission trading schemes in China – A CGE-analysis using TermCO2 model," Applied Energy, Elsevier, vol. 189(C), pages 762-769.
    3. Bai-Chen Xie & Jie Gao & Shuang Zhang & ZhongXiang Zhang, 2017. "What Factors Affect the Competiveness of Power Generation Sector in China? An Analysis Based on Game Cross-efficiency," Working Papers 2017.12, Fondazione Eni Enrico Mattei.
    4. Chia-Lin Chang & Michael McAleer, 2019. "Modeling Latent Carbon Emission Prices for Japan: Theory and Practice," Energies, MDPI, vol. 12(21), pages 1-21, November.
    5. Chuanxin Xia & Yu Zhao & Qingxia Zhao & Shuo Wang & Ning Zhang, 2022. "Exact Eco-Efficiency Measurement in the Yellow River Basin: A New Non-Parametric Approach," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    6. Tang, Ling & Shi, Jiarui & Bao, Qin, 2016. "Designing an emissions trading scheme for China with a dynamic computable general equilibrium model," Energy Policy, Elsevier, vol. 97(C), pages 507-520.
    7. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    8. Chen, Anping & Groenewold, Nicolaas, 2015. "Emission reduction policy: A regional economic analysis for China," Economic Modelling, Elsevier, vol. 51(C), pages 136-152.
    9. Haijun Zhao & Weichun Ma & Hongjia Dong & Ping Jiang, 2017. "Analysis of Co-Effects on Air Pollutants and CO 2 Emissions Generated by End-of-Pipe Measures of Pollution Control in China’s Coal-Fired Power Plants," Sustainability, MDPI, vol. 9(4), pages 1-19, March.
    10. Wang, Xu & Zhu, Lei & Fan, Ying, 2018. "Transaction costs, market structure and efficient coverage of emissions trading scheme: A microlevel study from the pilots in China," Applied Energy, Elsevier, vol. 220(C), pages 657-671.
    11. Yang, Lin & Li, Fengyu & Zhang, Xian, 2016. "Chinese companies’ awareness and perceptions of the Emissions Trading Scheme (ETS): Evidence from a national survey in China," Energy Policy, Elsevier, vol. 98(C), pages 254-265.
    12. Yung-Hsiang Lu & Ku-Hsieh Chen & Jen-Chi Cheng & Chih-Chun Chen & Sian-Yuan Li, 2019. "Analysis of Environmental Productivity on Fossil Fuel Power Plants in the U.S," Sustainability, MDPI, vol. 11(24), pages 1-27, December.
    13. Zhao, Yu & Zhong, Honglin & Kong, Fanbin & Zhang, Ning, 2023. "Can China achieve carbon neutrality without power shortage? A substitutability perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    14. Yifei Hua & Feng Dong, 2019. "China’s Carbon Market Development and Carbon Market Connection: A Literature Review," Energies, MDPI, vol. 12(9), pages 1-25, May.
    15. Wei, Xiao & Zhang, Ning, 2020. "The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach," Energy Economics, Elsevier, vol. 85(C).
    16. Zhang, Yijun & Song, Yi, 2020. "Unified efficiency of coal mining enterprises in China: An analysis based on meta-frontier non-radial directional distance functions," Resources Policy, Elsevier, vol. 65(C).
    17. Yizhang He & Wei Song, 2022. "Analysis of the Impact of Carbon Trading Policies on Carbon Emission and Carbon Emission Efficiency," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    18. Huiqin Jiang & Xinxiao Shao & Xiao Zhang & Jianqiang Bao, 2017. "A Study of the Allocation of Carbon Emission Permits among the Provinces of China Based on Fairness and Efficiency," Sustainability, MDPI, vol. 9(11), pages 1-17, November.
    19. Chunyu Pan & Anil Kumar Shrestha & Guangyu Wang & John L. Innes & Kevin Xinwei Wang & Nuyun Li & Jinliang Li & Yeyun He & Chunguang Sheng & John-O. Niles, 2021. "A Linkage Framework for the China National Emission Trading System (CETS): Insight from Key Global Carbon Markets," Sustainability, MDPI, vol. 13(13), pages 1-15, July.
    20. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2006-:d:152421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.