IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p1830-d150164.html
   My bibliography  Save this article

The Marginal Value of Heat in the Korean Manufacturing Industry

Author

Listed:
  • Hyo-Jin Kim

    (Department of Energy Policy, Graduate School of Energy & Environment, Seoul National University of Science & Technology, 232 Gongreung-Ro, Nowon-Gu, Seoul 01811, Korea)

  • Hee-Hoon Kim

    (Department of Energy Policy, Graduate School of Energy & Environment, Seoul National University of Science & Technology, 232 Gongreung-Ro, Nowon-Gu, Seoul 01811, Korea)

  • Seung-Hoon Yoo

    (Department of Energy Policy, Graduate School of Energy & Environment, Seoul National University of Science & Technology, 232 Gongreung-Ro, Nowon-Gu, Seoul 01811, Korea)

Abstract

Thirty industrial heat (IH) providers in Korea have better energy efficiency and emit lower air pollutants than individual companies that produce and consume heat for their industrial production. Because these providers collect waste heat from garbage incineration plants, power plants, or industrial processes of steel and chemical companies, as well as heat generated through combined heat and power plants and boilers. IH is an important input, used in industrial production as a form of hot water or steam. This note tries to assess the marginal value (MV) of IH in the manufacturing industry, using the specific case of Korea. To this end, a trans-log production function is estimated using the data gathered from a survey of 256 manufacturing firms in Korea. The MV of IH is estimated to be KRW 203,696 (USD 175.40) per tonne. This estimate is statistically significant at the 1% level. The average price of IH, defined as total expenditure on IH purchased in 2016 divided by total amount of IH purchased in 2016, is KRW 39,455 (USD 34.00) per tonne. Therefore, the MV of IH is about five times as large as the average price of IH.

Suggested Citation

  • Hyo-Jin Kim & Hee-Hoon Kim & Seung-Hoon Yoo, 2018. "The Marginal Value of Heat in the Korean Manufacturing Industry," Sustainability, MDPI, vol. 10(6), pages 1-6, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1830-:d:150164
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/1830/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/1830/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Sun-Young & Yoo, Seung-Hoon, 2013. "The economic value of LNG in the Korean manufacturing industry," Energy Policy, Elsevier, vol. 58(C), pages 403-407.
    2. Hua Wang & Somik Lall, 2002. "Valuing water for Chinese industries: a marginal productivity analysis," Applied Economics, Taylor & Francis Journals, vol. 34(6), pages 759-765.
    3. Se-Ju Ku & Seung-Hoon Yoo, 2012. "Economic Value of Water in the Korean Manufacturing Industry," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 81-88, January.
    4. Alireza Javanshir & Nenad Sarunac & Zahra Razzaghpanah, 2017. "Thermodynamic Analysis of ORC and Its Application for Waste Heat Recovery," Sustainability, MDPI, vol. 9(11), pages 1-26, October.
    5. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2016. "The demand function for residential heat through district heating system and its consumption benefits in Korea," Energy Policy, Elsevier, vol. 97(C), pages 155-160.
    6. Diane Dupont & Steven Renzetti, 2001. "The Role of Water in Manufacturing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 18(4), pages 411-432, April.
    7. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1973. "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 28-45, February.
    8. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    9. Philipp Geyer & Muhannad Delwati & Martin Buchholz & Alessandro Giampieri & Andrew Smallbone & Anthony P. Roskilly & Reiner Buchholz & Mathieu Provost, 2018. "Use Cases with Economics and Simulation for Thermo-Chemical District Networks," Sustainability, MDPI, vol. 10(3), pages 1-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyo-Jin Kim & Gyeong-Sam Kim & Seung-Hoon Yoo, 2019. "Demand Function for Industrial Electricity: Evidence from South Korean Manufacturing Sector," Sustainability, MDPI, vol. 11(18), pages 1-11, September.
    2. Hyo-Jin Kim & Jae-Sung Paek & Seung-Hoon Yoo, 2019. "Price Elasticity of Heat Demand in South Korean Manufacturing Sector: An Empirical Investigation," Sustainability, MDPI, vol. 11(21), pages 1-10, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyo-Jin Kim & Su-Mi Han & Seung-Hoon Yoo, 2018. "Measuring the Economic Benefits of Industrial Natural Gas Use in South Korea," Sustainability, MDPI, vol. 10(7), pages 1-10, June.
    2. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2016. "The demand function for residential heat through district heating system and its consumption benefits in Korea," Energy Policy, Elsevier, vol. 97(C), pages 155-160.
    3. So-Yeon Park & Seul-Ye Lim & Seung-Hoon Yoo, 2016. "The Economic Value of the National Meteorological Service in the Korean Household Sector: A Contingent Valuation Study," Sustainability, MDPI, vol. 8(9), pages 1-13, August.
    4. Se-Ju Ku & Seung-Hoon Yoo, 2012. "Economic Value of Water in the Korean Manufacturing Industry," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 81-88, January.
    5. Jos順鲥s & Arnaud Reynaud & Alban Thomas, 2012. "Water reuse in Brazilian manufacturing firms," Applied Economics, Taylor & Francis Journals, vol. 44(11), pages 1417-1427, April.
    6. Hyo-Jin Kim & Gyeong-Sam Kim & Seung-Hoon Yoo, 2019. "Demand Function for Industrial Electricity: Evidence from South Korean Manufacturing Sector," Sustainability, MDPI, vol. 11(18), pages 1-11, September.
    7. repec:npf:wpaper:12 is not listed on IDEAS
    8. repec:ind:nipfwp:12 is not listed on IDEAS
    9. Karabulut, Armağan & Egoh, Benis N. & Lanzanova, Denis & Grizzetti, Bruna & Bidoglio, Giovanni & Pagliero, Liliana & Bouraoui, Fayçal & Aloe, Alberto & Reynaud, Arnaud & Maes, Joachim & Vandecasteel, 2016. "Mapping water provisioning services to support the ecosystem–water–food–energy nexus in the Danube river basin," Ecosystem Services, Elsevier, vol. 17(C), pages 278-292.
    10. Randy A. Becker, 2016. "Water Use and Conservation in Manufacturing: Evidence from U.S. Microdata," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4185-4200, September.
    11. Hyo-Jin Kim & Jae-Sung Paek & Seung-Hoon Yoo, 2019. "Price Elasticity of Heat Demand in South Korean Manufacturing Sector: An Empirical Investigation," Sustainability, MDPI, vol. 11(21), pages 1-10, November.
    12. Park, Sun-Young & Yoo, Seung-Hoon, 2013. "The economic value of LNG in the Korean manufacturing industry," Energy Policy, Elsevier, vol. 58(C), pages 403-407.
    13. Linz, Teresa & Tsegai, Daniel W., 2009. "Industrial Water Demand analysis in the Middle Olifants sub-basin of South Africa: The case of Mining," Discussion Papers 49927, University of Bonn, Center for Development Research (ZEF).
    14. Kumar, Surender, 2004. "Analysing industrial water demand in India: An input distance function approach," Working Papers 04/12, National Institute of Public Finance and Policy.
    15. Guo, Xiaodan & Xiao, Bowen, 2022. "How can pricing strategy for district heating help China realize cleaner residential heating?," Energy Economics, Elsevier, vol. 110(C).
    16. Shaofeng Jia & Qiubo Long & Raymond Yu Wang & Jiabo Yan & Deyong Kang, 2016. "On the Inapplicability of the Cobb-Douglas Production Function for Estimating the Benefit of Water Use and the Value of Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3645-3650, August.
    17. Frédéric Reynès, 2011. "The cobb-douglas function as an approximation of other functions," SciencePo Working papers Main hal-01069515, HAL.
    18. Seyed Mohammad Seyed Mahmoudi & Ramin Ghiami Sardroud & Mohsen Sadeghi & Marc A. Rosen, 2022. "Integration of Supercritical CO 2 Recompression Brayton Cycle with Organic Rankine/Flash and Kalina Cycles: Thermoeconomic Comparison," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
    19. Brox, James A. & Fader, Christina, 1996. "Production elasticity differences between just-in-time and non-just-in-time users in the automotive parts industry," The North American Journal of Economics and Finance, Elsevier, vol. 7(1), pages 77-90.
    20. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    21. Wilson, E.J. & Chaudhri, D.P., 2000. "Endogeneity, Knowledge and Dynamics of Long Run Capitalist Economic Growth," Economics Working Papers wp00-03, School of Economics, University of Wollongong, NSW, Australia.
    22. Jeßberger Christoph & Sindram Maximilian & Zimmer Markus, 2011. "Global Warming Induced Water-Cycle Changes and Industrial Production – A Scenario Analysis for the Upper Danube River Basin," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(3), pages 415-439, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1830-:d:150164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.