IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4535-d186968.html
   My bibliography  Save this article

Residential Energy Sustainability in China and Germany: The Impact of National Energy Policy System

Author

Listed:
  • Chunhong Sheng

    (China Center for Special Economic Zone Research, Shenzhen University, Shenzhen 518060, China)

  • Yun Cao

    (School of Governance, Technical University of Munich, 80333 Munich, Germany)

  • Bing Xue

    (Institute for Advanced Sustainability Studies e.V. (IASS), 14467 Potsdam, Germany)

Abstract

The energy consumption and carbon emission of Chinese households is growing rapidly and will continue to do so for the near future. Currently, Chinese energy policies mainly focus on the industrial sector instead of the residential sector. Among industrialized countries, Germany has performed relatively well in the residential sector, which can provide valuable lessons for China. This paper investigates the policy-making, implementation, and resulting patterns of Chinese and German residential energy policies from a multi-level perspective. The policy system study provides a holistic view over the factors influencing residential energy sustainability. The main findings are: (1) the German residential energy policy system follows a hybrid policy model, combining top-down and bottom-up policy designs, with more demand-side or market-oriented policies, and a high level of public participation, resulting in remarkable headway toward sustainability in the residential energy sector; and (2) the Chinese energy policy system is characterized by top-down, supply-side oriented market policies with limited public participation. The policy implication of this study for China is to shift its top-down policy paradigm to a hybrid policy model that facilitates public participation in the residential energy sector.

Suggested Citation

  • Chunhong Sheng & Yun Cao & Bing Xue, 2018. "Residential Energy Sustainability in China and Germany: The Impact of National Energy Policy System," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4535-:d:186968
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4535/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ingo Balderjahn & Anja Buerke & Manfred Kirchgeorg & Mathias Peyer & Barbara Seegebarth & Klaus-Peter Wiedmann, 2013. "Consciousness for sustainable consumption: scale development and new insights in the economic dimension of consumers’ sustainability," AMS Review, Springer;Academy of Marketing Science, vol. 3(4), pages 181-192, December.
    2. Feng, Zhen-Hua & Zou, Le-Le & Wei, Yi-Ming, 2011. "The impact of household consumption on energy use and CO2 emissions in China," Energy, Elsevier, vol. 36(1), pages 656-670.
    3. Ortzi Akizu & Gorka Bueno & Iñaki Barcena & Erol Kurt & Nurettin Topaloğlu & Jose Manuel Lopez-Guede, 2018. "Contributions of Bottom-Up Energy Transitions in Germany: A Case Study Analysis," Energies, MDPI, vol. 11(4), pages 1-21, April.
    4. Jia, Jun-Jun & Xu, Jin-Hua & Fan, Ying & Ji, Qiang, 2018. "Willingness to accept energy-saving measures and adoption barriers in the residential sector: An empirical analysis in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 56-73.
    5. Wu, Ya & Zhang, Li, 2017. "Evaluation of energy saving effects of tiered electricity pricing and investigation of the energy saving willingness of residents," Energy Policy, Elsevier, vol. 109(C), pages 208-217.
    6. Rogge, Karoline S. & Reichardt, Kristin, 2016. "Policy mixes for sustainability transitions: An extended concept and framework for analysis," Research Policy, Elsevier, vol. 45(8), pages 1620-1635.
    7. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    8. Morgane Innocent & Agnès François-Lecompte, 2018. "The values of electricity saving for consumers," Post-Print hal-01863894, HAL.
    9. Kivimaa, Paula & Kern, Florian, 2016. "Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions," Research Policy, Elsevier, vol. 45(1), pages 205-217.
    10. Jing-Li Fan & Hua Liao & Bao-Jun Tang & Su-Yan Pan & Hao Yu & Yi-Ming Wei, 2016. "The impacts of migrant workers consumption on energy use and CO 2 emissions in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 725-743, March.
    11. Sun, Chuanwang, 2015. "An empirical case study about the reform of tiered pricing for household electricity in China," Applied Energy, Elsevier, vol. 160(C), pages 383-389.
    12. Bing Xue & Mario Tobias, 2015. "Sustainability in China: Bridging Global Knowledge with Local Action," Sustainability, MDPI, vol. 7(4), pages 1-7, March.
    13. Yuan Qiao & Kaisheng Huang & Johannes Jeub & Jianan Qian & Yizhou Song, 2018. "Deploying Electric Vehicle Charging Stations Considering Time Cost and Existing Infrastructure," Energies, MDPI, vol. 11(9), pages 1-13, September.
    14. Zhao, Zhen-Yu & Chen, Yu-Long & Chang, Rui-Dong, 2016. "How to stimulate renewable energy power generation effectively? – China's incentive approaches and lessons," Renewable Energy, Elsevier, vol. 92(C), pages 147-156.
    15. Böhringer, Christoph & Rutherford, Thomos F., 2009. "Integrated assessment of energy policies: Decomposing top-down and bottom-up," Journal of Economic Dynamics and Control, Elsevier, vol. 33(9), pages 1648-1661, September.
    16. Du, Gang & Lin, Wei & Sun, Chuanwang & Zhang, Dingzhong, 2015. "Residential electricity consumption after the reform of tiered pricing for household electricity in China," Applied Energy, Elsevier, vol. 157(C), pages 276-283.
    17. Sovacool, Benjamin K., 2011. "An international comparison of four polycentric approaches to climate and energy governance," Energy Policy, Elsevier, vol. 39(6), pages 3832-3844, June.
    18. Kaenzig, Josef & Heinzle, Stefanie Lena & Wüstenhagen, Rolf, 2013. "Whatever the customer wants, the customer gets? Exploring the gap between consumer preferences and default electricity products in Germany," Energy Policy, Elsevier, vol. 53(C), pages 311-322.
    19. Wustenhagen, Rolf & Bilharz, Michael, 2006. "Green energy market development in Germany: effective public policy and emerging customer demand," Energy Policy, Elsevier, vol. 34(13), pages 1681-1696, September.
    20. Innocent, Morgane & Francois-Lecompte, Agnès, 2018. "The values of electricity saving for consumers," Energy Policy, Elsevier, vol. 123(C), pages 136-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenyu Lu & Peng Meng & Xueyan Zhao & Lu Jiang & Zilong Zhang & Bing Xue, 2019. "Assessing the Economic-Environmental Efficiency of Energy Consumption and Spatial Patterns in China," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
    2. Shuxin Mao & Sha Qiu & Tao Li & Mingfang Tang & Hongbing Deng & Hua Zheng, 2020. "Using Characteristic Energy to Study Rural Ethnic Minorities’ Household Energy Consumption and Its Impact Factors in Chongqing, China," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
    3. Lu Jiang & Xingpeng Chen & Bing Xue, 2019. "Features, Driving Forces and Transition of the Household Energy Consumption in China: A Review," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    4. Minkyu Kim & Chankook Park, 2021. "Academic Topics Related to Household Energy Consumption Using the Future Sign Detection Technique," Energies, MDPI, vol. 14(24), pages 1-24, December.
    5. Yu Hao & Shang Gao & Yunxia Guo & Zhiqiang Gai & Haitao Wu, 2021. "Measuring the nexus between economic development and environmental quality based on environmental Kuznets curve: a comparative study between China and Germany for the period of 2000–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16848-16873, November.
    6. Luiza Ossowska & Dorota Janiszewska & Natalia Bartkowiak-Bakun & Grzegorz Kwiatkowski, 2020. "Energy Consumption Versus Greenhouse Gas Emissions in EU," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 185-198.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Ruidong & Cao, Yuan & Lu, Yujie & Shabunko, Veronika, 2019. "Should BIPV technologies be empowered by innovation policy mix to facilitate energy transitions? - Revealing stakeholders' different perspectives using Q methodology," Energy Policy, Elsevier, vol. 129(C), pages 307-318.
    2. Barbanente, Angela & Grassini, Laura, 2022. "Fostering transitions in landscape policies: A multi-level perspective," Land Use Policy, Elsevier, vol. 112(C).
    3. Wang, Zhaohua & Sun, Yefei & Wang, Bo, 2020. "Policy cognition is more effective than step tariff in promoting electricity saving behaviour of residents," Energy Policy, Elsevier, vol. 139(C).
    4. Imbert, Enrica & Ladu, Luana & Morone, Piergiuseppe & Quitzow, Rainer, 2017. "Policy strategies for a transition to a bioeconomy in Europe: the case of Italy and Germany," MPRA Paper 78143, University Library of Munich, Germany.
    5. Befort, N., 2020. "Going beyond definitions to understand tensions within the bioeconomy: The contribution of sociotechnical regimes to contested fields," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    6. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    7. Weigelt, Carmen & Lu, Shaohua & Verhaal, J. Cameron, 2021. "Blinded by the sun: The role of prosumers as niche actors in incumbent firms’ adoption of solar power during sustainability transitions," Research Policy, Elsevier, vol. 50(9).
    8. Jonas Heiberg & Christian Binz & Bernhard Truffer, 2020. "Assessing transitions through socio-technical network analysis – a methodological framework and a case study from the water sector," Papers in Evolutionary Economic Geography (PEEG) 2035, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Aug 2020.
    9. Raven, Rob & Walrave, Bob, 2020. "Overcoming transformational failures through policy mixes in the dynamics of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    10. Heiberg, Jonas & Truffer, Bernhard & Binz, Christian, 2022. "Assessing transitions through socio-technical configuration analysis – a methodological framework and a case study in the water sector," Research Policy, Elsevier, vol. 51(1).
    11. Rogge, Karoline S. & Pfluger, Benjamin & Geels, Frank W., 2020. "Transformative policy mixes in socio-technical scenarios: The case of the low-carbon transition of the German electricity system (2010–2050)," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    12. Falcone, Pasquale Marcello & Lopolito, Antonio & Sica, Edgardo, 2019. "Instrument mix for energy transition: A method for policy formulation," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    13. Haddad, Carolina R. & Bergek, Anna, 2023. "Towards an integrated framework for evaluating transformative innovation policy," Research Policy, Elsevier, vol. 52(2).
    14. Haley, Brendan, 2018. "Integrating structural tensions into technological innovation systems analysis: Application to the case of transmission interconnections and renewable electricity in Nova Scotia, Canada," Research Policy, Elsevier, vol. 47(6), pages 1147-1160.
    15. Matos, Stelvia & Viardot, Eric & Sovacool, Benjamin K. & Geels, Frank W. & Xiong, Yu, 2022. "Innovation and climate change: A review and introduction to the special issue," Technovation, Elsevier, vol. 117(C).
    16. Schmidt, Tobias S. & Sewerin, Sebastian, 2019. "Measuring the temporal dynamics of policy mixes – An empirical analysis of renewable energy policy mixes’ balance and design features in nine countries," Research Policy, Elsevier, vol. 48(10).
    17. Samson Afewerki & Asbjørn Karlsen, 2021. "Policy mixes for just sustainable regional development in industrially overspecialized regions: the case of two Norwegian petro-maritime regions," PEGIS geo-disc-2021_02, Institute for Economic Geography and GIScience, Department of Socioeconomics, Vienna University of Economics and Business.
    18. Laatsit, Mart & Grillitsch, Markus & Fünfschilling, Lea, 2022. "Great expectations: the promises and limits of innovation policy in addressing societal challenges," Papers in Innovation Studies 2022/9, Lund University, CIRCLE - Centre for Innovation Research.
    19. Wang, Xiaolei & Wei, Chunxin & Wang, Yanhua, 2022. "Does the current tiered electricity pricing structure still restrain electricity consumption in China's residential sector?," Energy Policy, Elsevier, vol. 165(C).
    20. Grillitsch, Markus & Hansen, Teis, 2018. "Green industrial path development in different types of regions," Papers in Innovation Studies 2018/11, Lund University, CIRCLE - Centre for Innovation Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4535-:d:186968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.