IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v50y2021i9s0048733321000573.html
   My bibliography  Save this article

Blinded by the sun: The role of prosumers as niche actors in incumbent firms’ adoption of solar power during sustainability transitions

Author

Listed:
  • Weigelt, Carmen
  • Lu, Shaohua
  • Verhaal, J. Cameron

Abstract

While extant research discusses how niche innovations develop in protected market niches and trigger regime shifts along sustainability transition pathways, we know less about the direct role of different niche actors as competitors in affecting regime incumbents’ investments in niche innovations. This study addresses this gap and builds on Strategic Niche Management and the Multi-level Perspective to distinguish two different niche actors: prosumers on the demand-side applying a niche innovation in a disruptive way to regime incumbents’ business model, and new entrants on the supply-side applying the niche innovation symbiotically with the regime. We examine incumbent responses to these different niche actors in different competitive and policy environments. Studying the United States’ electricity industry's sustainability transition toward solar from 2010-2017, we find that as more niche actors enter, regime incumbents are more likely to invest in the niche innovation, but the effect is influenced by policy and competitiveness of the environment. In competitive environments, incumbents are more likely to respond to disruptive niche actors (prosumers), while in traditional monopoly-like markets they are more likely to respond to symbiotic niche actors. We also find that the prosumer effect is stronger when the time that policies in support of the niche innovation have existed is shorter, indicating a potential substituting relationship of niche actors and policy. Our work contributes to the extant literature by demonstrating that the interplay between different niche actors needs to be understood within the context of policy, and that considering policy without accounting for the competitive environment may omit an important aspect of how regime actors become active participants in sustainability transitions.

Suggested Citation

  • Weigelt, Carmen & Lu, Shaohua & Verhaal, J. Cameron, 2021. "Blinded by the sun: The role of prosumers as niche actors in incumbent firms’ adoption of solar power during sustainability transitions," Research Policy, Elsevier, vol. 50(9).
  • Handle: RePEc:eee:respol:v:50:y:2021:i:9:s0048733321000573
    DOI: 10.1016/j.respol.2021.104253
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048733321000573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.respol.2021.104253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markard, Jochen & Petersen, Regula, 2009. "The offshore trend: Structural changes in the wind power sector," Energy Policy, Elsevier, vol. 37(9), pages 3545-3556, September.
    2. Smith, Adrian & Raven, Rob, 2012. "What is protective space? Reconsidering niches in transitions to sustainability," Research Policy, Elsevier, vol. 41(6), pages 1025-1036.
    3. Berggren, Christian & Magnusson, Thomas & Sushandoyo, Dedy, 2015. "Transition pathways revisited: Established firms as multi-level actors in the heavy vehicle industry," Research Policy, Elsevier, vol. 44(5), pages 1017-1028.
    4. Magali Delmas & Yesim Tokat, 2005. "Deregulation, governance structures, and efficiency: the U.S. electric utility sector," Strategic Management Journal, Wiley Blackwell, vol. 26(5), pages 441-460, May.
    5. Paul L. Joskow, 2015. "The Shale Gas Revolution:Introduction," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    6. Penna, Caetano C.R. & Geels, Frank W., 2015. "Climate change and the slow reorientation of the American car industry (1979–2012): An application and extension of the Dialectic Issue LifeCycle (DILC) model," Research Policy, Elsevier, vol. 44(5), pages 1029-1048.
    7. Thomas P. Lyon & Haitao Yin, 2010. "Why Do States Adopt Renewable Portfolio Standards?: An Empirical Investigation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 133-158.
    8. Frank W. Geels, 2013. "The Impact of the Financial and Economic Crisis on Sustainability Transitions: Financial Investment, Governance and Public Discourse. WWWforEurope Working Paper No. 39," WIFO Studies, WIFO, number 47014, February.
    9. Castaneda, Monica & Jimenez, Maritza & Zapata, Sebastian & Franco, Carlos J. & Dyner, Isaac, 2017. "Myths and facts of the utility death spiral," Energy Policy, Elsevier, vol. 110(C), pages 105-116.
    10. Wiser, Ryan & Barbose, Galen & Holt, Edward, 2011. "Supporting solar power in renewables portfolio standards: Experience from the United States," Energy Policy, Elsevier, vol. 39(7), pages 3894-3905, July.
    11. Geels, Frank W., 2010. "Ontologies, socio-technical transitions (to sustainability), and the multi-level perspective," Research Policy, Elsevier, vol. 39(4), pages 495-510, May.
    12. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    13. Fuenfschilling, Lea & Truffer, Bernhard, 2014. "The structuration of socio-technical regimes—Conceptual foundations from institutional theory," Research Policy, Elsevier, vol. 43(4), pages 772-791.
    14. Steen, Markus & Weaver, Tyson, 2017. "Incumbents’ diversification and cross-sectorial energy industry dynamics," Research Policy, Elsevier, vol. 46(6), pages 1071-1086.
    15. Geels, Frank W., 2012. "A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies," Journal of Transport Geography, Elsevier, vol. 24(C), pages 471-482.
    16. Bergek, Anna & Berggren, Christian & Magnusson, Thomas & Hobday, Michael, 2013. "Technological discontinuities and the challenge for incumbent firms: Destruction, disruption or creative accumulation?," Research Policy, Elsevier, vol. 42(6), pages 1210-1224.
    17. Eid, Cherrelle & Reneses Guillén, Javier & Frías Marín, Pablo & Hakvoort, Rudi, 2014. "The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives," Energy Policy, Elsevier, vol. 75(C), pages 244-254.
    18. Lisa-Britt Fischer & Jens Newig, 2016. "Importance of Actors and Agency in Sustainability Transitions: A Systematic Exploration of the Literature," Sustainability, MDPI, vol. 8(5), pages 1-21, May.
    19. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    20. Lindberg, Marie Byskov & Markard, Jochen & Andersen, Allan Dahl, 2019. "Policies, actors and sustainability transition pathways: A study of the EU’s energy policy mix," Research Policy, Elsevier, vol. 48(10).
    21. repec:aen:journl:eeep4_1_intro is not listed on IDEAS
    22. Magda M. Smink & Marko P. Hekkert & Simona O. Negro, 2015. "Keeping sustainable innovation on a leash? Exploring incumbents’ institutional strategies," Business Strategy and the Environment, Wiley Blackwell, vol. 24(2), pages 86-101, February.
    23. John F. Mahon & Edwin A. Murray, 1981. "Strategic planning for regulated companies," Strategic Management Journal, Wiley Blackwell, vol. 2(3), pages 251-262, July.
    24. Rogge, Karoline S. & Reichardt, Kristin, 2016. "Policy mixes for sustainability transitions: An extended concept and framework for analysis," Research Policy, Elsevier, vol. 45(8), pages 1620-1635.
    25. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    26. Kivimaa, Paula & Kern, Florian, 2016. "Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions," Research Policy, Elsevier, vol. 45(1), pages 205-217.
    27. Ossenbrink, Jan & Finnsson, Sveinbjoern & Bening, Catharina R. & Hoffmann, Volker H., 2019. "Delineating policy mixes: Contrasting top-down and bottom-up approaches to the case of energy-storage policy in California," Research Policy, Elsevier, vol. 48(10).
    28. Jan Ossenbrink & Joern Hoppmann & Volker H. Hoffmann, 2019. "Hybrid Ambidexterity: How the Environment Shapes Incumbents’ Use of Structural and Contextual Approaches," Organization Science, INFORMS, vol. 30(6), pages 1319-1348, November.
    29. Hess, David J., 2014. "Sustainability transitions: A political coalition perspective," Research Policy, Elsevier, vol. 43(2), pages 278-283.
    30. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    31. Eun-Hee Kim & Yoo Na Youm, 2017. "How Do Social Media Affect Analyst Stock Recommendations? Evidence from S&P 500 Electric Power Companies' Twitter Accounts," Strategic Management Journal, Wiley Blackwell, vol. 38(13), pages 2599-2622, December.
    32. Michael V. Russo, 2003. "The emergence of sustainable industries: building on natural capital," Strategic Management Journal, Wiley Blackwell, vol. 24(4), pages 317-331, April.
    33. Geels, Frank W. & Kern, Florian & Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Mylan, Josephine & Neukirch, Mario & Wassermann, Sandra, 2016. "The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014)," Research Policy, Elsevier, vol. 45(4), pages 896-913.
    34. Johan Schot & Laur Kanger & Geert Verbong, 2016. "The roles of users in shaping transitions to new energy systems," Nature Energy, Nature, vol. 1(5), pages 1-7, May.
    35. Geels, Frank W., 2006. "The hygienic transition from cesspools to sewer systems (1840-1930): The dynamics of regime transformation," Research Policy, Elsevier, vol. 35(7), pages 1069-1082, September.
    36. Magali Delmas & Michael V. Russo & Maria J. Montes‐Sancho, 2007. "Deregulation and environmental differentiation in the electric utility industry," Strategic Management Journal, Wiley Blackwell, vol. 28(2), pages 189-209, February.
    37. Amemiya, Takeshi, 1978. "The Estimation of a Simultaneous Equation Generalized Probit Model," Econometrica, Econometric Society, vol. 46(5), pages 1193-1205, September.
    38. Johan Schot & Frank Geels, 2007. "Niches in evolutionary theories of technical change," Journal of Evolutionary Economics, Springer, vol. 17(5), pages 605-622, October.
    39. Raven, Rob, 2007. "Niche accumulation and hybridisation strategies in transition processes towards a sustainable energy system: An assessment of differences and pitfalls," Energy Policy, Elsevier, vol. 35(4), pages 2390-2400, April.
    40. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    41. Rothaermel, Frank T., 2001. "Complementary assets, strategic alliances, and the incumbent's advantage: an empirical study of industry and firm effects in the biopharmaceutical industry," Research Policy, Elsevier, vol. 30(8), pages 1235-1251, October.
    42. Schmidt, Tobias S. & Sewerin, Sebastian, 2019. "Measuring the temporal dynamics of policy mixes – An empirical analysis of renewable energy policy mixes’ balance and design features in nine countries," Research Policy, Elsevier, vol. 48(10).
    43. Rivers, Douglas & Vuong, Quang H., 1988. "Limited information estimators and exogeneity tests for simultaneous probit models," Journal of Econometrics, Elsevier, vol. 39(3), pages 347-366, November.
    44. Kira R. Fabrizio, 2012. "Institutions, Capabilities, and Contracts: Make or Buy in the Electric Utility Industry," Organization Science, INFORMS, vol. 23(5), pages 1264-1281, October.
    45. Lesser, Jonathan A., 2002. "Welcome to the New Era of Resource Planning: Why Restructuring May Lead to More Complex Regulation, Not Less," The Electricity Journal, Elsevier, vol. 15(5), pages 20-28, June.
    46. Desiree F. Pacheco & Thomas J. Dean, 2015. "Firm responses to social movement pressures: A competitive dynamics perspective," Strategic Management Journal, Wiley Blackwell, vol. 36(7), pages 1093-1104, July.
    47. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    48. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    49. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    50. Suzanne G. Tilleman & Michael V. Russo & Andrew J. Nelson, 2020. "Institutional Logics and Technology Development: Evidence from the Wind and Solar Energy Industries," Organization Science, INFORMS, vol. 31(3), pages 649-670, May.
    51. Delmas, Magali A. & Montes-Sancho, Maria J., 2011. "U.S. state policies for renewable energy: Context and effectiveness," Energy Policy, Elsevier, vol. 39(5), pages 2273-2288, May.
    52. Florian Kern & Michael Howlett, 2009. "Implementing transition management as policy reforms: a case study of the Dutch energy sector," Policy Sciences, Springer;Society of Policy Sciences, vol. 42(4), pages 391-408, November.
    53. Turnheim, Bruno & Geels, Frank W., 2019. "Incumbent actors, guided search paths, and landmark projects in infra-system transitions: Re-thinking Strategic Niche Management with a case study of French tramway diffusion (1971–2016)," Research Policy, Elsevier, vol. 48(6), pages 1412-1428.
    54. Paul Joskow, 2005. "Regulation and Deregulation after 25 Years: Lessons Learned for Research in Industrial Organization," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 26(2), pages 169-193, December.
    55. Smith, Josh T. & Patty, Grant & Colton, Katie, 2018. "Net Metering in the States A primer on reforms to avoid regressive effects and encourage competition," Center for Growth and Opportunity at Utah State University 307176, Center for Growth and Opportunity.
    56. Rosenbloom, Daniel & Berton, Harris & Meadowcroft, James, 2016. "Framing the sun: A discursive approach to understanding multi-dimensional interactions within socio-technical transitions through the case of solar electricity in Ontario, Canada," Research Policy, Elsevier, vol. 45(6), pages 1275-1290.
    57. Stokes, Leah C. & Breetz, Hanna L., 2018. "Politics in the U.S. energy transition: Case studies of solar, wind, biofuels and electric vehicles policy," Energy Policy, Elsevier, vol. 113(C), pages 76-86.
    58. Monica Giulietti & Catherine Waddams Price & Michael Waterson, 2005. "Consumer Choice and Competition Policy: a Study of UK Energy Markets," Economic Journal, Royal Economic Society, vol. 115(506), pages 949-968, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peprah, Forson & Gyamfi, Samuel & Effah-Donyina, Eric & Amo-Boateng, Mark, 2023. "The pathway for electricity prosumption in Ghana," Energy Policy, Elsevier, vol. 177(C).
    2. Ling Ding & Jinxi Wu & Ziyou Ma & Jialu Mai, 2022. "Regional Niche and Spatial Distribution of Foreign Investment in China from 2012 to 2021," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    3. Shittu, Ekundayo & Weigelt, Carmen, 2022. "Accessibility in sustainability transitions: U.S. electric utilities’ deployment of solar," Energy Policy, Elsevier, vol. 165(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng Wang & Tao Lv & Rongjiang Cai & Jianfeng Xu & Liya Wang, 2022. "Bibliometric Analysis of Multi-Level Perspective on Sustainability Transition Research," Sustainability, MDPI, vol. 14(7), pages 1-31, March.
    2. Kanger, Laur & Sovacool, Benjamin K. & Noorkõiv, Martin, 2020. "Six policy intervention points for sustainability transitions: A conceptual framework and a systematic literature review," Research Policy, Elsevier, vol. 49(7).
    3. Geels, Frank W., 2020. "Micro-foundations of the multi-level perspective on socio-technical transitions: Developing a multi-dimensional model of agency through crossovers between social constructivism, evolutionary economics," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    4. Johan Miörner & Jonas Heiberg & Christian Binz, 2021. "Global regime diffusion in space: a missed transition in San Diego’s water sector," GEIST - Geography of Innovation and Sustainability Transitions 2021(08), GEIST Working Paper Series.
    5. Lindberg, Marie Byskov & Markard, Jochen & Andersen, Allan Dahl, 2019. "Policies, actors and sustainability transition pathways: A study of the EU’s energy policy mix," Research Policy, Elsevier, vol. 48(10).
    6. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    7. Jonas Heiberg & Christian Binz & Bernhard Truffer, 2020. "Assessing transitions through socio-technical network analysis – a methodological framework and a case study from the water sector," Papers in Evolutionary Economic Geography (PEEG) 2035, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Aug 2020.
    8. Heiberg, Jonas & Truffer, Bernhard & Binz, Christian, 2022. "Assessing transitions through socio-technical configuration analysis – a methodological framework and a case study in the water sector," Research Policy, Elsevier, vol. 51(1).
    9. Lenfle, Sylvain & Söderlund, Jonas, 2022. "Project-oriented agency and regeneration in socio-technical transition: Insights from the case of numerical weather prediction (1978–2015)," Research Policy, Elsevier, vol. 51(3).
    10. Ignė Stalmokaitė & Johanna Yliskylä-Peuralahti, 2019. "Sustainability Transitions in Baltic Sea Shipping: Exploring the Responses of Firms to Regulatory Changes," Sustainability, MDPI, vol. 11(7), pages 1-23, March.
    11. Steen, Markus & Weaver, Tyson, 2017. "Incumbents’ diversification and cross-sectorial energy industry dynamics," Research Policy, Elsevier, vol. 46(6), pages 1071-1086.
    12. Kern, Florian & Rogge, Karoline S. & Howlett, Michael, 2019. "Policy mixes for sustainability transitions: New approaches and insights through bridging innovation and policy studies," Research Policy, Elsevier, vol. 48(10).
    13. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.
    14. Andersen, Allan Dahl & Markard, Jochen, 2020. "Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    15. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Hoppmann, Joern & Hoffmann, Volker H., 2022. "Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix," Research Policy, Elsevier, vol. 51(10).
    16. Attila Havas & Doris Schartinger & K. Matthias Weber, 2022. "Innovation Studies, Social Innovation, and Sustainability Transitions Research: From mutual ignorance towards an integrative perspective?," CERS-IE WORKING PAPERS 2227, Institute of Economics, Centre for Economic and Regional Studies.
    17. Svensson, Oscar & Nikoleris, Alexandra, 2018. "Structure reconsidered: Towards new foundations of explanatory transitions theory," Research Policy, Elsevier, vol. 47(2), pages 462-473.
    18. Rosenbloom, Daniel & Berton, Harris & Meadowcroft, James, 2016. "Framing the sun: A discursive approach to understanding multi-dimensional interactions within socio-technical transitions through the case of solar electricity in Ontario, Canada," Research Policy, Elsevier, vol. 45(6), pages 1275-1290.
    19. Haddad, Carolina R. & Bergek, Anna, 2023. "Towards an integrated framework for evaluating transformative innovation policy," Research Policy, Elsevier, vol. 52(2).
    20. Thomas Magnusson & Viktor Werner, 2023. "Conceptualisations of incumbent firms in sustainability transitions: Insights from organisation theory and a systematic literature review," Business Strategy and the Environment, Wiley Blackwell, vol. 32(2), pages 903-919, February.

    More about this item

    Keywords

    sustainability transitions; strategic niche management; solar power; prosumers; niche actors and competition; incumbent response;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:50:y:2021:i:9:s0048733321000573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.