IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2017i1p57-d124590.html
   My bibliography  Save this article

Effects of Building Design Elements on Residential Thermal Environment

Author

Listed:
  • Yingbao Yang

    (School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China)

  • Xize Zhang

    (School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China)

  • Xi Lu

    (School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China)

  • Jia Hu

    (School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China)

  • Xin Pan

    (School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China)

  • Qin Zhu

    (School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China)

  • Weizhong Su

    (State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China)

Abstract

Residential thermal environment affects the life of residents in terms of their physical and mental health. Many studies have shown that building design elements affect the urban thermal environment. In this study, Nanjing City was used as the study area. A three-dimensional microclimate model was used to simulate and analyze the effects of four main factors, namely, building height, density, layout and green ratio, on thermal environment in residential areas. Results showed that 25% building density obtained a low average air temperature (ATa) and average predicted mean vote (APMV) during 24 h. Thus, a higher building height indicates a lower ATa and APMV and better outdoor comfort level. In addition, peripheral layout had the lowest ATa and APMV, followed by the determinant and point group layouts. The green ratio increased from 0% to 50% with a 10% step and the ATa and APMV decreased gradually. However, when the green ratio increased from 30% to 40%, ATa and APMV decreased most. The effects of building height, density and green ratio on the thermal environment in residential areas were interactive. The effects of building density, green ratio and layout on hourly air temperature and hourly predicted mean vote in daytime varied from these indicators during night time. How the four building design elements interact with thermal environment were probed from two aspects of air temperature and thermal comfort based on the validated ENVI-met, which is the element of novelty in this study. However, thermal comfort has rarely been considered in the past studies about urban outdoor thermal environment.

Suggested Citation

  • Yingbao Yang & Xize Zhang & Xi Lu & Jia Hu & Xin Pan & Qin Zhu & Weizhong Su, 2017. "Effects of Building Design Elements on Residential Thermal Environment," Sustainability, MDPI, vol. 10(1), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2017:i:1:p:57-:d:124590
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/1/57/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/1/57/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    2. Kikegawa, Yukihiro & Genchi, Yutaka & Kondo, Hiroaki & Hanaki, Keisuke, 2006. "Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building's energy-consumption for air-conditioning," Applied Energy, Elsevier, vol. 83(6), pages 649-668, June.
    3. Weizhong Su & Yong Zhang & Yingbao Yang & Gaobin Ye, 2014. "Examining the Impact of Greenspace Patterns on Land Surface Temperature by Coupling LiDAR Data with a CFD Model," Sustainability, MDPI, vol. 6(10), pages 1-16, September.
    4. Reid Ewing & Fang Rong, 2008. "The impact of urban form on U.S. residential energy use," Housing Policy Debate, Taylor & Francis Journals, vol. 19(1), pages 1-30, January.
    5. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lili Zhang & Haoru Liu & Dong Wei & Fei Liu & Yanru Li & Haolin Li & Zhuojun Dong & Jingyue Cheng & Lei Tian & Guomin Zhang & Long Shi, 2022. "Impacts of Spatial Components on Outdoor Thermal Comfort in Traditional Linpan Settlements," IJERPH, MDPI, vol. 19(11), pages 1-26, May.
    2. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.
    3. Yingjie Jiang & Changguang Wu & Mingjun Teng, 2020. "Impact of Residential Building Layouts on Microclimate in a High Temperature and High Humidity Region," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    4. Ruoning Chen & Xue-yi You, 2020. "Reduction of urban heat island and associated greenhouse gas emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 689-711, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    2. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    3. Gago, E.J. & Roldan, J. & Pacheco-Torres, R. & Ordóñez, J., 2013. "The city and urban heat islands: A review of strategies to mitigate adverse effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 749-758.
    4. Yang, Jiachuan & Wang, Zhi-Hua & Kaloush, Kamil E., 2015. "Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 830-843.
    5. Radhi, Hassan & Sharples, Stephen, 2013. "Quantifying the domestic electricity consumption for air-conditioning due to urban heat islands in hot arid regions," Applied Energy, Elsevier, vol. 112(C), pages 371-380.
    6. Kong, Fanhua & Sun, Changfeng & Liu, Fengfeng & Yin, Haiwei & Jiang, Fei & Pu, Yingxia & Cavan, Gina & Skelhorn, Cynthia & Middel, Ariane & Dronova, Iryna, 2016. "Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer," Applied Energy, Elsevier, vol. 183(C), pages 1428-1440.
    7. Néstor Santillán-Soto & O. Rafael García-Cueto & Alejandro A. Lambert-Arista & Sara Ojeda-Benítez & Samantha E. Cruz-Sotelo, 2019. "Comparative Analysis of Two Urban Microclimates: Energy Consumption and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 11(7), pages 1-11, April.
    8. Li, Canbing & Zhou, Jinju & Cao, Yijia & Zhong, Jin & Liu, Yu & Kang, Chongqing & Tan, Yi, 2014. "Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season," Applied Energy, Elsevier, vol. 117(C), pages 149-156.
    9. Yujiro Hirano & Tomohiko Ihara & Kei Gomi & Tsuyoshi Fujita, 2019. "Simulation-Based Evaluation of the Effect of Green Roofs in Office Building Districts on Mitigating the Urban Heat Island Effect and Reducing CO 2 Emissions," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    10. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    11. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    12. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    13. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    14. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    15. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
    16. Louise Bedsworth, 2012. "California’s local health agencies and the state’s climate adaptation strategy," Climatic Change, Springer, vol. 111(1), pages 119-133, March.
    17. Angeles Campos-Osorio & Néstor Santillán-Soto & O. Rafael García-Cueto & Alejandro A. Lambert-Arista & Gonzalo Bojórquez-Morales, 2020. "Energy and Environmental Comparison between a Concrete Wall with and without a Living Green Wall: A Case Study in Mexicali, Mexico," Sustainability, MDPI, vol. 12(13), pages 1-10, June.
    18. Alper Ozpinar, 2023. "A Hyper-Integrated Mobility as a Service (MaaS) to Gamification and Carbon Market Enterprise Architecture Framework for Sustainable Environment," Energies, MDPI, vol. 16(5), pages 1-22, March.
    19. Zhang, Junyi & Teng, Fei & Zhou, Shaojie, 2020. "The structural changes and determinants of household energy choices and energy consumption in urban China: Addressing the role of building type," Energy Policy, Elsevier, vol. 139(C).
    20. Flückiger, Matthias & Ludwig, Markus, 2022. "Temperature and risk of diarrhoea among children in Sub-Saharan Africa," World Development, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2017:i:1:p:57-:d:124590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.