IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v5y2021i1p2-25d710128.html
   My bibliography  Save this article

Path Analysis of Sea-Level Rise and Its Impact

Author

Listed:
  • Jean Chung

    (Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
    These authors contributed equally to this work.)

  • Guanchao Tong

    (Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
    These authors contributed equally to this work.)

  • Jiayou Chao

    (Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
    These authors contributed equally to this work.)

  • Wei Zhu

    (Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, Stony Brook, NY 11794, USA)

Abstract

Global sea-level rise has been drawing increasingly greater attention in recent years, as it directly impacts the livelihood and sustainable development of humankind. Our research focuses on identifying causal factors and pathways on sea level changes (both global and regional) and subsequently predicting the magnitude of such changes. To this end, we have designed a novel analysis pipeline including three sequential steps: (1) a dynamic structural equation model (dSEM) to identify pathways between the global mean sea level (GMSL) and various predictors, (2) a vector autoregression model (VAR) to quantify the GMSL changes due to the significant relations identified in the first step, and (3) a generalized additive model (GAM) to model the relationship between regional sea level and GMSL. Historical records of GMSL and other variables from 1992 to 2020 were used to calibrate the analysis pipeline. Our results indicate that greenhouse gases, water, and air temperatures, change in Antarctic and Greenland Ice Sheet mass, sea ice, and historical sea level all play a significant role in future sea-level rise. The resulting 95% upper bound of the sea-level projections was combined with a threshold for extreme flooding to map out the extent of sea-level rise in coastal communities using a digital coastal tracker.

Suggested Citation

  • Jean Chung & Guanchao Tong & Jiayou Chao & Wei Zhu, 2021. "Path Analysis of Sea-Level Rise and Its Impact," Stats, MDPI, vol. 5(1), pages 1-14, December.
  • Handle: RePEc:gam:jstats:v:5:y:2021:i:1:p:2-25:d:710128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/5/1/2/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/5/1/2/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    2. Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
    3. Søren Johansen, 2010. "The Analysis of Nonstationary Time Series Using Regression, Correlation and Cointegration with an Application to Annual Mean Temperature and Sea Level," Discussion Papers 10-27, University of Copenhagen. Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    2. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    3. Daniel Melser & Robert J. Hill, 2019. "Residential Real Estate, Risk, Return and Diversification: Some Empirical Evidence," The Journal of Real Estate Finance and Economics, Springer, vol. 59(1), pages 111-146, July.
    4. Maciej Berȩsewicz & Dagmara Nikulin, 2021. "Estimation of the size of informal employment based on administrative records with non‐ignorable selection mechanism," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 667-690, June.
    5. Adam R. Pines & Bart Larsen & Zaixu Cui & Valerie J. Sydnor & Maxwell A. Bertolero & Azeez Adebimpe & Aaron F. Alexander-Bloch & Christos Davatzikos & Damien A. Fair & Ruben C. Gur & Raquel E. Gur & H, 2022. "Dissociable multi-scale patterns of development in personalized brain networks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Daniel Melser, 2017. "Residential Real Estate, Risk, Return and Home Characteristics: Evidence from Sydney 2002-14," ERES eres2017_296, European Real Estate Society (ERES).
    7. Phung Khanh Lam & Dong Thi Hoai Tam & Nguyen Minh Dung & Nguyen Thi Hanh Tien & Nguyen Tan Thanh Kieu & Cameron Simmons & Jeremy Farrar & Bridget Wills & Marcel Wolbers, 2015. "A Prognostic Model for Development of Profound Shock among Children Presenting with Dengue Shock Syndrome," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-13, May.
    8. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    9. Gerhard Tutz & Jan Gertheiss, 2014. "Rating Scales as Predictors—The Old Question of Scale Level and Some Answers," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 357-376, July.
    10. Sandra Bilek-Steindl & Christian Glocker & Serguei Kaniovski & Thomas Url, 2016. "Austria 2025 – The Effect of Human Capital Accumulation on Output Growth," WIFO Studies, WIFO, number 59175, February.
    11. Hübler, Michael & Bukin, Eduard & Xi, Yuting, 2020. "The effects of international trade on structural change and CO2 emissions," Kiel Working Papers 2174, Kiel Institute for the World Economy (IfW Kiel).
    12. Musolesi Antonio & Mazzanti Massimiliano, 2014. "Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic development relation for advanced countries," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 1-21, December.
    13. Nedellec, Raphael & Cugliari, Jairo & Goude, Yannig, 2014. "GEFCom2012: Electric load forecasting and backcasting with semi-parametric models," International Journal of Forecasting, Elsevier, vol. 30(2), pages 375-381.
    14. Scott Tainsky & Brian M. Mills & Jason A. Winfree, 2015. "Further Examination of Potential Discrimination Among MLB Umpires," Journal of Sports Economics, , vol. 16(4), pages 353-374, May.
    15. Daniel Melser & Iqbal A. Syed, 2017. "The product life cycle and sample representativity bias in price indexes," Applied Economics, Taylor & Francis Journals, vol. 49(6), pages 573-586, February.
    16. Finigan, Duncan & Mills, Brian M. & Stone, Daniel F., 2020. "Pulling starters," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 89(C).
    17. Giampiero Marra & Rosalba Radice & Till Bärnighausen & Simon N. Wood & Mark E. McGovern, 2017. "A Simultaneous Equation Approach to Estimating HIV Prevalence With Nonignorable Missing Responses," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 484-496, April.
    18. Stefan Sperlich & Raoul Theler, 2015. "Modeling heterogeneity: a praise for varying-coefficient models in causal analysis," Computational Statistics, Springer, vol. 30(3), pages 693-718, September.
    19. Cho, Haeran & Goude, Yannig & Brossat, Xavier & Yao, Qiwei, 2013. "Modeling and forecasting daily electricity load curves: a hybrid approach," LSE Research Online Documents on Economics 49634, London School of Economics and Political Science, LSE Library.
    20. Emma M. V. Blomgren & Mohsen Banaei & Razgar Ebrahimy & Olof Samuelsson & Francesco D’Ettorre & Henrik Madsen, 2023. "Intensive Data-Driven Model for Real-Time Observability in Low-Voltage Radial DSO Grids," Energies, MDPI, vol. 16(11), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:5:y:2021:i:1:p:2-25:d:710128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.