IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1450-d1099570.html
   My bibliography  Save this article

Quarantine and Vaccination in Hierarchical Epidemic Model

Author

Listed:
  • Elena Gubar

    (Faculty of Applied Mathematics and Control Processes, Saint Petersburg State University, Saint Petersburg 198504, Russia
    These authors contributed equally to this work.)

  • Vladislav Taynitskiy

    (Faculty of Applied Mathematics and Control Processes, Saint Petersburg State University, Saint Petersburg 198504, Russia
    These authors contributed equally to this work.)

  • Denis Fedyanin

    (V. A. Trapeznikov Institute of Control Sciences of RAS, Moscow 117997, Russia
    These authors contributed equally to this work.)

  • Ilya Petrov

    (V. A. Trapeznikov Institute of Control Sciences of RAS, Moscow 117997, Russia
    These authors contributed equally to this work.)

Abstract

The analysis of global epidemics, such as SARS, MERS, and COVID-19, suggests a hierarchical structure of the epidemic process. The pandemic wave starts locally and accelerates through human-to-human interactions, eventually spreading globally after achieving an efficient and sustained transmission. In this paper, we propose a hierarchical model for the virus spread that divides the spreading process into three levels: a city, a region, and a country. We define the virus spread at each level using a modified susceptible–exposed–infected–recovery–dead (SEIRD) model, which assumes migration between levels. Our proposed controlled hierarchical epidemic model incorporates quarantine and vaccination as complementary optimal control strategies. We analyze the balance between the cost of the active virus spread and the implementation of appropriate quarantine measures. Furthermore, we differentiate the levels of the hierarchy by their contribution to the cost of controlling the epidemic. Finally, we present a series of numerical experiments to support the theoretical results obtained.

Suggested Citation

  • Elena Gubar & Vladislav Taynitskiy & Denis Fedyanin & Ilya Petrov, 2023. "Quarantine and Vaccination in Hierarchical Epidemic Model," Mathematics, MDPI, vol. 11(6), pages 1-17, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1450-:d:1099570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1450/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1450/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rowthorn, Robert & Toxvaerd, Flavio, 2012. "The Optimal Control of Infectious Diseases via Prevention and Treatment," CEPR Discussion Papers 8925, C.E.P.R. Discussion Papers.
    2. Martin S Eichenbaum & Sergio Rebelo & Mathias Trabandt, 2021. "The Macroeconomics of Epidemics [Economic activity and the spread of viral diseases: Evidence from high frequency data]," The Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5149-5187.
    3. Daron Acemoglu & Victor Chernozhukov & Iván Werning & Michael D. Whinston, 2021. "Optimal Targeted Lockdowns in a Multigroup SIR Model," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 487-502, December.
    4. Fernando E. Alvarez & David Argente & Francesco Lippi, 2020. "A Simple Planning Problem for COVID-19 Lockdown," NBER Working Papers 26981, National Bureau of Economic Research, Inc.
    5. Farboodi, Maryam & Jarosch, Gregor & Shimer, Robert, 2021. "Internal and external effects of social distancing in a pandemic," Journal of Economic Theory, Elsevier, vol. 196(C).
    6. Elena Gubar & Vladislav Taynitskiy & Quanyan Zhu, 2018. "Optimal Control of Heterogeneous Mutating Viruses," Games, MDPI, vol. 9(4), pages 1-18, December.
    7. Elena Gubar & Laura Policardo & Edgar J. Sanchez Carrera & Vladislav Taynitskiy, 2021. "Optimal Lockdown Policies driven by Socioeconomic Costs," Papers 2105.08349, arXiv.org.
    8. Martial L Ndeffo Mbah & Christopher A Gilligan, 2011. "Resource Allocation for Epidemic Control in Metapopulations," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-10, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julliard, Christian & Shi, Ran & Yuan, Kathy, 2023. "The spread of COVID-19 in London: Network effects and optimal lockdowns," Journal of Econometrics, Elsevier, vol. 235(2), pages 2125-2154.
    2. Léa BOU SLEIMAN & Germain GAUTHIER, 2020. "COVID-19: Reduced forms have gone viral, but what do they tell us?," Working Papers 2020-32, Center for Research in Economics and Statistics, revised 18 Jan 2021.
    3. Santiago Forero-Alvarado & Nicolás Moreno-Arias & Juan J. Ospina-Tejeiro, 2021. "Humans Against Virus or Humans Against Humans: A Game Theory Approach to the COVID-19 Pandemic," Borradores de Economia 1160, Banco de la Republica de Colombia.
    4. Elena Gubar & Laura Policardo & Edgar J. Sanchez Carrera & Vladislav Taynitskiy, 2021. "Optimal Lockdown Policies driven by Socioeconomic Costs," Papers 2105.08349, arXiv.org.
    5. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    6. Dirk Niepelt & Mart n Gonzalez-Eiras, 2020. "Optimally Controlling an Epidemic," Diskussionsschriften dp2019, Universitaet Bern, Departement Volkswirtschaft.
    7. Carnehl, Christoph & Fukuda, Satoshi & Kos, Nenad, 2023. "Epidemics with behavior," Journal of Economic Theory, Elsevier, vol. 207(C).
    8. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    9. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    10. Yasushi Iwamoto, 2021. "Welfare economics of managing an epidemic: an exposition," The Japanese Economic Review, Springer, vol. 72(4), pages 537-579, October.
    11. Glover, Andrew & Heathcote, Jonathan & Krueger, Dirk, 2022. "Optimal age-Based vaccination and economic mitigation policies for the second phase of the covid-19 pandemic," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    12. Dizioli, Allan & Pinheiro, Roberto, 2021. "Information and inequality in the time of a pandemic," Journal of Economic Dynamics and Control, Elsevier, vol. 130(C).
    13. Attar, M. Aykut & Tekin-Koru, Ayça, 2022. "Latent social distancing: Identification, causes and consequences," Economic Systems, Elsevier, vol. 46(1).
    14. Farboodi, Maryam & Jarosch, Gregor & Shimer, Robert, 2021. "Internal and external effects of social distancing in a pandemic," Journal of Economic Theory, Elsevier, vol. 196(C).
    15. Garriga, Carlos & Manuelli, Rody & Sanghi, Siddhartha, 2022. "Optimal management of an epidemic: Lockdown, vaccine and value of life," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    16. Yinon Bar-On & Tatiana Baron & Ofer Cornfeld & Eran Yashiv, 2023. "When to Lock, Not Whom: Managing Epidemics Using Time-Based Restrictions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 292-321, December.
    17. Çakmaklı, Cem & Demiralp, Selva & Özcan, Şebnem Kalemli & Yeşiltaş, Sevcan & Yıldırım, Muhammed A., 2023. "COVID-19 and emerging markets: A SIR model, demand shocks and capital flows," Journal of International Economics, Elsevier, vol. 145(C).
    18. Aspri, Andrea & Beretta, Elena & Gandolfi, Alberto & Wasmer, Etienne, 2021. "Mortality containment vs. Economics Opening: Optimal policies in a SEIARD model," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    19. Janssen, Aljoscha & Shapiro, Matthew H., 2021. "Does precise case disclosure limit precautionary behavior? Evidence from COVID-19 in Singapore," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 700-714.
    20. Saidi, Farzad & Alfaro, Laura & Faia, Ester & Lamersdorf, Nora, 2020. "Social Interactions in Pandemics: Fear, Altruism, and Reciprocity," CEPR Discussion Papers 14716, C.E.P.R. Discussion Papers.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1450-:d:1099570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.