IDEAS home Printed from https://ideas.repec.org/a/gam/jgames/v9y2018i4p103-d190387.html
   My bibliography  Save this article

Optimal Control of Heterogeneous Mutating Viruses

Author

Listed:
  • Elena Gubar

    (Faculty of Applied Mathematics and Control Processes, St. Petersburg State University, Universitetskii Prospekt 35, Petergof, Saint-Petersburg 198504, Russia
    These authors contributed equally to this work.)

  • Vladislav Taynitskiy

    (Faculty of Applied Mathematics and Control Processes, St. Petersburg State University, Universitetskii Prospekt 35, Petergof, Saint-Petersburg 198504, Russia
    These authors contributed equally to this work.)

  • Quanyan Zhu

    (Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
    These authors contributed equally to this work.)

Abstract

Different strains of influenza viruses spread in human populations during every epidemic season. As the size of an infected population increases, the virus can mutate itself and grow in strength. The traditional epidemic SIR model does not capture virus mutations and, hence, the model is not sufficient to study epidemics where the virus mutates at the same time as it spreads. In this work, we establish a novel framework to study the epidemic process with mutations of influenza viruses, which couples the SIR model with replicator dynamics used for describing virus mutations. We formulated an optimal control problem to study the optimal strategies for medical treatment and quarantine decisions. We obtained structural results for the optimal strategies and used numerical examples to corroborate our results.

Suggested Citation

  • Elena Gubar & Vladislav Taynitskiy & Quanyan Zhu, 2018. "Optimal Control of Heterogeneous Mutating Viruses," Games, MDPI, vol. 9(4), pages 1-18, December.
  • Handle: RePEc:gam:jgames:v:9:y:2018:i:4:p:103-:d:190387
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-4336/9/4/103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-4336/9/4/103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rota Bulò, Samuel & Bomze, Immanuel M., 2011. "Infection and immunization: A new class of evolutionary game dynamics," Games and Economic Behavior, Elsevier, vol. 71(1), pages 193-211, January.
    2. Declan Butler, 2012. "Flu surveillance lacking," Nature, Nature, vol. 483(7391), pages 520-522, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guiyun Liu & Jieyong Chen & Zhongwei Liang & Zhimin Peng & Junqiang Li, 2021. "Dynamical Analysis and Optimal Control for a SEIR Model Based on Virus Mutation in WSNs," Mathematics, MDPI, vol. 9(9), pages 1-16, April.
    2. Elena Gubar & Laura Policardo & Edgar J. Sanchez Carrera & Vladislav Taynitskiy, 2021. "Optimal Lockdown Policies driven by Socioeconomic Costs," Papers 2105.08349, arXiv.org.
    3. Xiyun Zhang & Zhongyuan Ruan & Muhua Zheng & Jie Zhou & Stefano Boccaletti & Baruch Barzel, 2022. "Epidemic spreading under mutually independent intra- and inter-host pathogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Elena Gubar & Vladislav Taynitskiy & Denis Fedyanin & Ilya Petrov, 2023. "Quarantine and Vaccination in Hierarchical Epidemic Model," Mathematics, MDPI, vol. 11(6), pages 1-17, March.
    5. Quanyan Zhu & Elena Gubar & Eitan Altman, 2022. "Preface to Special Issue on Dynamic Games for Modeling and Control of Epidemics," Dynamic Games and Applications, Springer, vol. 12(1), pages 1-6, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bomze, Immanuel M. & Gabl, Markus & Maggioni, Francesca & Pflug, Georg Ch., 2022. "Two-stage stochastic standard quadratic optimization," European Journal of Operational Research, Elsevier, vol. 299(1), pages 21-34.
    2. Schimit, P.H.T. & Santos, B.O. & Soares, C.A., 2015. "Evolution of cooperation in Axelrod tournament using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 204-217.
    3. Pietro Dindo & Jan Tuinstra, 2011. "A Class of Evolutionary Models for Participation Games with Negative Feedback," Computational Economics, Springer;Society for Computational Economics, vol. 37(3), pages 267-300, March.
    4. Reinhard Ullrich, 2017. "The Continuous Time Infection–Immunization Dynamics," Dynamic Games and Applications, Springer, vol. 7(3), pages 492-506, September.
    5. Immanuel M. Bomze & Werner Schachinger & Reinhard Ullrich, 2018. "The Complexity of Simple Models—A Study of Worst and Typical Hard Cases for the Standard Quadratic Optimization Problem," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 651-674, May.
    6. Rota Bulò, Samuel & Pelillo, Marcello, 2017. "Dominant-set clustering: A review," European Journal of Operational Research, Elsevier, vol. 262(1), pages 1-13.
    7. Stephenson, Daniel, 2019. "Coordination and evolutionary dynamics: When are evolutionary models reliable?," Games and Economic Behavior, Elsevier, vol. 113(C), pages 381-395.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgames:v:9:y:2018:i:4:p:103-:d:190387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.