IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v8y2024i2p45-d1377537.html
   My bibliography  Save this article

Electrifying the Last-Mile Logistics (LML) in Intensive B2B Operations—An European Perspective on Integrating Innovative Platforms

Author

Listed:
  • Alejandro Sanz

    (Sagax.tech., Hof van Londen 40, 7007KT Doetinchem, The Netherlands)

  • Peter Meyer

    (Alliance Automotive Group, Darwinstraat 20, 6718XR Ede, The Netherlands)

Abstract

Background : literature on last mile logistic electrification has primarily focused either on the stakeholder interactions defining urban rules and policies for urban freight or on the technical aspects of the logistic EVs. Methods : the article incorporates energy sourcing, vehicles, logistics operation, and digital cloud environment, aiming at economic and functional viability. Using a combination of engineering and business modeling combined with the unique opportunity of the actual insights from Europe’s largest tender in the automotive aftermarket electrification. Results : the Last Mile Logistics (LML) electrification is possible and profitable without jeopardizing the high-tempo deliveries. Critical asset identification for a viable transition to EVs leads to open new lines of research for future logistic dynamics rendered possible by the digital dimensions of the logistic ecosystem. Conclusions : beyond the unquestionable benefits for the environment, the electrification of the LML constitutes an opportunity to enhance revenue and diversify income.

Suggested Citation

  • Alejandro Sanz & Peter Meyer, 2024. "Electrifying the Last-Mile Logistics (LML) in Intensive B2B Operations—An European Perspective on Integrating Innovative Platforms," Logistics, MDPI, vol. 8(2), pages 1-39, April.
  • Handle: RePEc:gam:jlogis:v:8:y:2024:i:2:p:45-:d:1377537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/8/2/45/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/8/2/45/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Siobhan Powell & Gustavo Vianna Cezar & Liang Min & Inês M. L. Azevedo & Ram Rajagopal, 2022. "Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption," Nature Energy, Nature, vol. 7(10), pages 932-945, October.
    2. Muhammad Usman Sardar & Toomas Vaimann & Lauri Kütt & Ants Kallaste & Bilal Asad & Siddique Akbar & Karolina Kudelina, 2023. "Inverter-Fed Motor Drive System: A Systematic Analysis of Condition Monitoring and Practical Diagnostic Techniques," Energies, MDPI, vol. 16(15), pages 1-41, July.
    3. Vijay Paidi & Roger G. Nyberg & Johan Håkansson, 2020. "Dynamic Scheduling and Communication System to Manage Last Mile Handovers," Logistics, MDPI, vol. 4(2), pages 1-11, June.
    4. Edoardo Marcucci & Amanda Stathopoulos & Valerio Gatta & Eva Valeri, 2012. "A Stated Ranking Experiment to Study Policy Acceptance: The Case of Freight Operators in Rome?s LTZ," SCIENZE REGIONALI, FrancoAngeli Editore, vol. 2012(3), pages 11-30.
    5. Aldemar Serrano & Dusko Kalenatic & Cesar López & Jairo R. Montoya-Torres, 2023. "Evolution of Military Logistics," Logistics, MDPI, vol. 7(2), pages 1-24, April.
    6. Khalid Aljohani & Russell G. Thompson, 2020. "An Examination of Last Mile Delivery Practices of Freight Carriers Servicing Business Receivers in Inner-City Areas," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    7. Matej Tkac & Martina Kajanova & Peter Bracinik, 2023. "A Review of Advanced Control Strategies of Microgrids with Charging Stations," Energies, MDPI, vol. 16(18), pages 1-25, September.
    8. Peter C. Schuur & Christopher N. Kellersmann, 2022. "Improving Transport Logistics by Aligning Long Combination Vehicles via Mobile Hub & Spoke Systems," Logistics, MDPI, vol. 6(1), pages 1-18, February.
    9. Nai K. Yu & Wen Jiang & Rong Hu & Bin Qian & Ling Wang & Lianbo Ma, 2021. "Learning Whale Optimization Algorithm for Open Vehicle Routing Problem with Loading Constraints," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-14, December.
    10. Yongjing Li & Wenhui Pei & Qi Zhang, 2022. "Improved Whale Optimization Algorithm Based on Hybrid Strategy and Its Application in Location Selection for Electric Vehicle Charging Stations," Energies, MDPI, vol. 15(19), pages 1-25, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farhat Afzah Samoon & Ikhlaq Hussain & Sheikh Javed Iqbal, 2023. "ILA Optimisation Based Control for Enhancing DC Link Voltage with Seamless and Adaptive VSC Control in a PV-BES Based AC Microgrid," Energies, MDPI, vol. 16(21), pages 1-23, October.
    2. Pavel Stanko & Matej Tkac & Martina Kajanova & Marek Roch, 2024. "Impacts of Electric Vehicle Charging Station with Photovoltaic System and Battery Energy Storage System on Power Quality in Microgrid," Energies, MDPI, vol. 17(2), pages 1-22, January.
    3. Zhang, Lele & Ding, Pengyuan & Thompson, Russell G., 2023. "A stochastic formulation of the two-echelon vehicle routing and loading bay reservation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    4. Gatta, Valerio & Marcucci, Edoardo, 2014. "Urban freight transport and policy changes: Improving decision makers' awareness via an agent-specific approach," Transport Policy, Elsevier, vol. 36(C), pages 248-252.
    5. Aljohani, Khalid & Thompson, Russell G., 2021. "Modelling individual preferences of goods receivers for a Receiver-led delivery consolidation service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 74-94.
    6. Marcucci, Edoardo & Gatta, Valerio & Scaccia, Luisa, 2015. "Urban freight, parking and pricing policies: An evaluation from a transport providers’ perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 239-249.
    7. Marcucci, Edoardo & Gatta, Valerio & Le Pira, Michela, 2018. "Gamification design to foster stakeholder engagement and behavior change: An application to urban freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 119-132.
    8. Andrii Galkin & Maria Olkhova & Stanisław Iwan & Kinga Kijewska & Serhii Ostashevskyi & Oleksii Lobashov, 2021. "Planning the Rational Freight Vehicle Fleet Utilization Considering the Season Temperature Factor," Sustainability, MDPI, vol. 13(7), pages 1-19, March.
    9. Marcucci, Edoardo & Le Pira, Michela & Gatta, Valerio & Inturri, Giuseppe & Ignaccolo, Matteo & Pluchino, Alessandro, 2017. "Simulating participatory urban freight transport policy-making: Accounting for heterogeneous stakeholders’ preferences and interaction effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 69-86.
    10. Zhang, Shulei & Jia, Runda & Pan, Hengxin & Cao, Yankai, 2023. "A safe reinforcement learning-based charging strategy for electric vehicles in residential microgrid," Applied Energy, Elsevier, vol. 348(C).
    11. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    12. Mladen Jardas & Ana Perić Hadžić & Edvard Tijan, 2021. "Defining and Measuring the Relevance of Criteria for the Evaluation of the Inflow of Goods in City Centers," Logistics, MDPI, vol. 5(3), pages 1-15, July.
    13. Maxwell Woody & Gregory A. Keoleian & Parth Vaishnav, 2023. "Decarbonization potential of electrifying 50% of U.S. light-duty vehicle sales by 2030," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Tomáš Settey & Jozef Gnap & Dominika Beňová & Michal Pavličko & Oľga Blažeková, 2021. "The Growth of E-Commerce Due to COVID-19 and the Need for Urban Logistics Centers Using Electric Vehicles: Bratislava Case Study," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    15. Fernanda Alves de Araújo & João Gilberto Mendes dos Reis & Marcia Terra da Silva & Emel Aktas, 2022. "A Fuzzy Analytic Hierarchy Process Model to Evaluate Logistics Service Expectations and Delivery Methods in Last-Mile Delivery in Brazil," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    16. Vasco Silva & António Amaral & Tânia Fontes, 2023. "Sustainable Urban Last-Mile Logistics: A Systematic Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    17. Jan Chocholac & Roman Hruska & Stanislav Machalik & Dana Sommerauerova & Petr Sohajek, 2021. "Framework for Greenhouse Gas Emissions Calculations in the Context of Road Freight Transport for the Automotive Industry," Sustainability, MDPI, vol. 13(7), pages 1-28, April.
    18. Marcucci, Edoardo & Gatta, Valerio, 2017. "Investigating the potential for off-hour deliveries in the city of Rome: Retailers’ perceptions and stated reactions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 142-156.
    19. Eren Akyol, Derya & De Koster, René B.M., 2018. "Determining time windows in urban freight transport: A city cooperative approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 34-50.
    20. Zhengying Cai & Xiaolu Wang & Rui Li & Qi Gao, 2023. "An Artificial Physarum polycephalum Colony for the Electric Location-Routing Problem," Sustainability, MDPI, vol. 15(23), pages 1-29, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:8:y:2024:i:2:p:45-:d:1377537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.