IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i10p358-d420848.html
   My bibliography  Save this article

Water Erosion Reduction Using Different Soil Tillage Approaches for Maize ( Zea mays L.) in the Czech Republic

Author

Listed:
  • Ladislav Menšík

    (Division of Crop Management Systems, Crop Research Institute, Drnovská 507/73, 161 06 Praha 6–Ruzyně, Czech Republic)

  • David Kincl

    (Research Institute for Soil and Water Conservation, Žabovřeská 250, 156 27 Praha 5–Zbraslav, Czech Republic
    Department of Land Use and Improvement, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha–Suchdol, Czech Republic)

  • Pavel Nerušil

    (Division of Crop Management Systems, Crop Research Institute, Drnovská 507/73, 161 06 Praha 6–Ruzyně, Czech Republic)

  • Jan Srbek

    (Research Institute for Soil and Water Conservation, Žabovřeská 250, 156 27 Praha 5–Zbraslav, Czech Republic)

  • Lukáš Hlisnikovský

    (Division of Crop Management Systems, Crop Research Institute, Drnovská 507/73, 161 06 Praha 6–Ruzyně, Czech Republic)

  • Vladimír Smutný

    (Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic)

Abstract

In today’s agriculture, maize is considered to be one of the major feed, food and industrial crops. Cultivation of maize by inappropriate agricultural practices and on unsuitable sites is connected with specific risks of soil degradation, mainly due to water erosion of the soil. The aim of this study was to evaluate the yielding parameters, fodder quality and anti-erosion efficiency of different methods of conservation tillage for maize in two areas (Jevíčko—JEV and Skoupý—SKO) with different climate and soil conditions in the Czech Republic in the period 2016–2018, using multivariate exploratory techniques such as principal component analysis (PCA) and factor analysis (FA). Four variants of soil tillage methods were analysed: Conventional Tillage (CT), two slightly different Strip-Till techniques (ST) and Direct Sowing (DS). The analysed parameters were: dry mass of the plants, height of the plants, starch content (SC), organic matter digestibility (OMD) and content of neutral detergent fibre (NDF), soil loss by erosion and surface runoff. The multivariate exploratory techniques PCA and FA significantly differed in two categories of techniques in both locations. The first category consists of soil conservation techniques (SCT): ST (JEV/SKO) and DS (JEV). These techniques are characterised by lower yields of dry mass, lower height of plants, forage quality equal to CT, but a high level of protection of the soil against erosion. The second category consists of CT (JEV and SKO) and partially of DS (SKO). These treatments are characterised by high dry mass production, higher plants, high forage quality, but a feeble capacity of protection of the soil against erosion. The results of the study confirm the presumption of the positive influence of introduction and application of new agronomical practices in the areas of interest and other areas with similar natural conditions in the sense of sustainable management for agricultural management of agricultural land for the conditions of the Czech Republic and therefore of Central and Eastern Europe. PCA and FA were used as an effective method for comprehensive evaluation of the use of STC in agricultural practice.

Suggested Citation

  • Ladislav Menšík & David Kincl & Pavel Nerušil & Jan Srbek & Lukáš Hlisnikovský & Vladimír Smutný, 2020. "Water Erosion Reduction Using Different Soil Tillage Approaches for Maize ( Zea mays L.) in the Czech Republic," Land, MDPI, vol. 9(10), pages 1-14, September.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:10:p:358-:d:420848
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/10/358/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/10/358/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blanco, María & Ramos, Fabien & Van Doorslaer, Benjamin & Martínez, Pilar & Fumagalli, Davide & Ceglar, Andrej & Fernández, Francisco J., 2017. "Climate change impacts on EU agriculture: A regionalized perspective taking into account market-driven adjustments," Agricultural Systems, Elsevier, vol. 156(C), pages 52-66.
    2. Claassen, Roger & Bowman, Maria & McFadden, Jonathan & Smith, David & Wallander, Steven, 2018. "Tillage Intensity and Conservation Cropping in the United States," Economic Information Bulletin 277566, United States Department of Agriculture, Economic Research Service.
    3. Wade, Tara & Claassen, Roger, 2017. "Modeling No-Till Adoption By Corn And Soybean Producers: Insights Into Sustained Adoption," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 49(2), pages 186-210, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syed Riaz Ahmed & Zeba Ali & Iram Ijaz & Zafran Khan & Nimra Gul & Soha Pervaiz & Hesham F. Alharby & Daniel K. Y. Tan & Muhammad Sayyam Tariq & Maria Ghaffar & Amir Bibi & Khalid Rehman Hakeem, 2023. "Multi-Trait Selection of Quinoa Ideotypes at Different Levels of Cutting and Spacing," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    2. Jakub Elbl & Antonín Kintl & Martin Brtnický & Petr Širůček & Jiří Mezera & Vladimír Smutný & Jan Vopravil & Jiří Holátko & Igor Huňady & Vojtěch Lukas, 2023. "Assessment of the effect of optimised field plot size on the crop yield," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(10), pages 447-462.
    3. Jakub Stašek & Josef Krása & Martin Mistr & Tomáš Dostál & Jan Devátý & Tomáš Středa & Jan Mikulka, 2023. "Using a Rainfall Simulator to Define the Effect of Soil Conservation Techniques on Soil Loss and Water Retention," Land, MDPI, vol. 12(2), pages 1-15, February.
    4. Daniel Vejchar & Jan Velebil & Karel Kubín & Jiří Bradna & Jan Malaťák, 2023. "The Effect of Reservoir Cultivation on Conventional Maize in Sandy-Loam Soil," Agriculture, MDPI, vol. 13(6), pages 1-12, June.
    5. Jakub Elbl & Antonín Kintl & Martin Brtnický & Petr Širůček & Jiří Mezera & Vladimír Smutný & Jan Vopravil & Jiří Holátko & Igor Huňady & Vojtěch Lukas, . "Assessment of the effect of optimised field plot size on the crop yield," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 0.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Le & Rejesus, Roderick M. & Aglasan, Serkan & Hagen, Stephen & Salas, William, 2022. "The Impact of No-Till Production on Agricultural Land Values in the US Midwest," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322445, Agricultural and Applied Economics Association.
    2. Che, Yuyuan & Rejesus, Roderick M. & Cavigelli, Michel A. & White, Kathryn E., 2022. "Long-Term Economic Impacts of No-Till Adoption," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322171, Agricultural and Applied Economics Association.
    3. David J. Pannell & Roger Claassen, 2020. "The Roles of Adoption and Behavior Change in Agricultural Policy," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(1), pages 31-41, March.
    4. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    5. Julian M. Alston & Philip G. Pardey, 2020. "Innovation, Growth, and Structural Change in American Agriculture," NBER Chapters, in: The Role of Innovation and Entrepreneurship in Economic Growth, pages 123-165, National Bureau of Economic Research, Inc.
    6. Carlson, Andrea & Greene, Catherine & Raszap Skorbiansky, Sharon & Hitaj, Claudia & Ha, Kim & Cavigelli, Michel & Ferrier, Peyton & McBride, William, 2023. "U.S. Organic Production, Markets, Consumers, and Policy, 2000-21," USDA Miscellaneous 333551, United States Department of Agriculture.
    7. DeLaune, P.B & Mubvumba, P. & Ale, S. & Kimura, E., 2020. "Impact of no-till, cover crop, and irrigation on Cotton yield," Agricultural Water Management, Elsevier, vol. 232(C).
    8. Elizabeth Canales & Jason S. Bergtold & Jeffery R. Williams, 2020. "Conservation practice complementarity and timing of on‐farm adoption," Agricultural Economics, International Association of Agricultural Economists, vol. 51(5), pages 777-792, September.
    9. Claassen, Roger & Bowman, Maria & McFadden, Jonathan & Smith, David & Wallander, Steven, 2018. "Tillage Intensity and Conservation Cropping in the United States," Economic Information Bulletin 277566, United States Department of Agriculture, Economic Research Service.
    10. Cristian Rogério Foguesatto & Felipe Dalzotto Artuzo & Edson Talamini & João Armando Dessimon Machado, 2020. "Understanding the divergences between farmer’s perception and meteorological records regarding climate change: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 1-16, January.
    11. Saavoss, Monica & Capehart, Thomas & McBride, William D & Effland, Anne, 2021. "Trends in Production Practices and Costs of the U.S. Corn Sector," Economic Research Report 327190, United States Department of Agriculture, Economic Research Service.
    12. Torbjörn Jansson & Ida Nordin & Fredrik Wilhelmsson & Peter Witzke & Gordana Manevska‐Tasevska & Franz Weiss & Alexander Gocht, 2021. "Coupled Agricultural Subsidies in the EU Undermine Climate Efforts," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1503-1519, December.
    13. Ru Guo & Xiaodong Qiu & Yiyi He, 2021. "Research on Agricultural Cooperation Potential between China and CEE Countries Based on Resource Complementarity," Mathematics, MDPI, vol. 9(5), pages 1-23, March.
    14. Sawadgo, Wendiam & Zhang, Wendong & Plastina, Alejandro, 2019. "What drives landowners’ conservation decisions? Evidence from Iowa," ISU General Staff Papers 201905230700001082, Iowa State University, Department of Economics.
    15. Le Chen & Roderick M. Rejesus & Serkan Aglasan & Stephen Hagen & William Salas, 2023. "The impact of no‐till on agricultural land values in the United States Midwest," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(3), pages 760-783, May.
    16. Osman, Eliyasu Y. & Bergtold, Jason S., 2023. "The Variation in Intensity of Alternative Tillage Practices Adopted by Farmers due to Crop Rotation and Geographic Factors," 2023 Annual Meeting, July 23-25, Washington D.C. 335830, Agricultural and Applied Economics Association.
    17. Konstantinos Metaxoglou & Aaron Smith, 2022. "Nutrient Pollution and US Agriculture: Causal Effects, Integrated Assessment, and Implications of Climate Change," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 297-341, National Bureau of Economic Research, Inc.
    18. Neal Hughes & Michael Lu & Wei Ying Soh & Kenton Lawson, 2022. "Modelling the effects of climate change on the profitability of Australian farms," Climatic Change, Springer, vol. 172(1), pages 1-22, May.
    19. Ceglar, A. & van der Wijngaart, R. & de Wit, A. & Lecerf, R. & Boogaard, H. & Seguini, L. & van den Berg, M. & Toreti, A. & Zampieri, M. & Fumagalli, D. & Baruth, B., 2019. "Improving WOFOST model to simulate winter wheat phenology in Europe: Evaluation and effects on yield," Agricultural Systems, Elsevier, vol. 168(C), pages 168-180.
    20. Huang, Yawen & Tao, Bo & Yang, Yanjun & Zhu, Xiaochen & Yang, Xiaojuan & Grove, John H. & Ren, Wei, 2022. "Simulating no-tillage effects on crop yield and greenhouse gas emissions in Kentucky corn and soybean cropping systems: 1980–2018," Agricultural Systems, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:10:p:358-:d:420848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.