IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i5p981-d1136093.html
   My bibliography  Save this article

The Heterogeneous Effects of Urban Form on CO 2 Emissions: An Empirical Analysis of 255 Cities in China

Author

Listed:
  • Chengye Jia

    (School of Economics, Shandong University of Finance and Economics, Jinan 250014, China
    These authors contributed equally to this work.)

  • Shuang Feng

    (School of Economics, Shandong University of Finance and Economics, Jinan 250014, China
    These authors contributed equally to this work.)

  • Hong Chu

    (School of Economics, Shandong University of Finance and Economics, Jinan 250014, China)

  • Weige Huang

    (Wenlan School of Business, Zhongnan University of Economics and Law, Wuhan 430073, China)

Abstract

Urban form is closely related to CO 2 emissions and the accurate estimation of the impact of urban form on CO 2 emissions plays an important role in tackling climate change caused by the emission of greenhouse gases. In this paper, we quantitatively investigate the effects of urban form on CO 2 emission and its efficiency from three perspectives: urban expansion, compactness, and complexity. By using panel quantile regression with fixed effects, we show that: (1) The estimation results about the relationship between urban form and CO 2 emission and its efficiency are consistent with the literature. (2) The partial effects of urban form without controlling for socioeconomic factors are heterogeneous throughout the conditional distribution of CO 2 emission and its efficiency. (3) Taking into consideration that the partial effects of urban form on CO 2 emission and its efficiency might depend on the magnitude of socioeconomic factors, we include interaction terms into our model and find that the interaction effects between socioeconomic factors and urban form are heterogeneous across cities with different levels of CO 2 emission and its efficiency. Our empirical findings shed light on the optimization of urban form in improving the CO 2 emission efficiency, providing policy makers with effective ways of reducing CO 2 emissions across cities with different levels of CO 2 emissions.

Suggested Citation

  • Chengye Jia & Shuang Feng & Hong Chu & Weige Huang, 2023. "The Heterogeneous Effects of Urban Form on CO 2 Emissions: An Empirical Analysis of 255 Cities in China," Land, MDPI, vol. 12(5), pages 1-24, April.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:981-:d:1136093
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/5/981/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/5/981/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fang, Kai & Tang, Yiqi & Zhang, Qifeng & Song, Junnian & Wen, Qi & Sun, Huaping & Ji, Chenyang & Xu, Anqi, 2019. "Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces," Applied Energy, Elsevier, vol. 255(C).
    2. Wang, Zhaohua & Huang, Wanjing & Chen, Zhongfei, 2019. "The peak of CO2 emissions in China: A new approach using survival models," Energy Economics, Elsevier, vol. 81(C), pages 1099-1108.
    3. Hankey, Steve & Marshall, Julian D., 2010. "Impacts of urban form on future US passenger-vehicle greenhouse gas emissions," Energy Policy, Elsevier, vol. 38(9), pages 4880-4887, September.
    4. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    5. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    6. Liu, Xiaochen & Sweeney, John, 2012. "Modelling the impact of urban form on household energy demand and related CO2 emissions in the Greater Dublin Region," Energy Policy, Elsevier, vol. 46(C), pages 359-369.
    7. Yao, Yongling & Pan, Haozhi & Cui, Xiaoyu & Wang, Zhen, 2022. "Do compact cities have higher efficiencies of agglomeration economies? A dynamic panel model with compactness indicators," Land Use Policy, Elsevier, vol. 115(C).
    8. Omri, Anis & Nguyen, Duc Khuong & Rault, Christophe, 2014. "Causal interactions between CO2 emissions, FDI, and economic growth: Evidence from dynamic simultaneous-equation models," Economic Modelling, Elsevier, vol. 42(C), pages 382-389.
    9. repec:ipg:wpaper:2014-542 is not listed on IDEAS
    10. Sheng Zheng & Yukuan Huang & Yu Sun, 2022. "Effects of Urban Form on Carbon Emissions in China: Implications for Low-Carbon Urban Planning," Land, MDPI, vol. 11(8), pages 1-17, August.
    11. Ishii, Satoshi & Tabushi, Shoichi & Aramaki, Toshiya & Hanaki, Keisuke, 2010. "Impact of future urban form on the potential to reduce greenhouse gas emissions from residential, commercial and public buildings in Utsunomiya, Japan," Energy Policy, Elsevier, vol. 38(9), pages 4888-4896, September.
    12. Changlong Sun & Yongli Zhang & Wenwen Ma & Rong Wu & Shaojian Wang, 2022. "The Impacts of Urban Form on Carbon Emissions: A Comprehensive Review," Land, MDPI, vol. 11(9), pages 1-20, August.
    13. Fang, Chuanglin & Wang, Shaojian & Li, Guangdong, 2015. "Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities," Applied Energy, Elsevier, vol. 158(C), pages 519-531.
    14. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    15. Lee, Sungwon & Lee, Bumsoo, 2014. "The influence of urban form on GHG emissions in the U.S. household sector," Energy Policy, Elsevier, vol. 68(C), pages 534-549.
    16. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2011. "Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, I," Energy, Elsevier, vol. 36(1), pages 685-693.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changlong Sun & Yongli Zhang & Wenwen Ma & Rong Wu & Shaojian Wang, 2022. "The Impacts of Urban Form on Carbon Emissions: A Comprehensive Review," Land, MDPI, vol. 11(9), pages 1-20, August.
    2. Chao-Qun Ma & Jiang-Long Liu & Yi-Shuai Ren & Yong Jiang, 2019. "The Impact of Economic Growth, FDI and Energy Intensity on China’s Manufacturing Industry’s CO 2 Emissions: An Empirical Study Based on the Fixed-Effect Panel Quantile Regression Model," Energies, MDPI, vol. 12(24), pages 1-16, December.
    3. Yuxin Liu & Chenjing Fan & Dongdong Xue, 2024. "A Review of the Effects of Urban and Green Space Forms on the Carbon Budget Using a Landscape Sustainability Framework," Sustainability, MDPI, vol. 16(5), pages 1-29, February.
    4. Fang, Chuanglin & Wang, Shaojian & Li, Guangdong, 2015. "Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities," Applied Energy, Elsevier, vol. 158(C), pages 519-531.
    5. Jie Zhao & Nguyen Xuan Thinh & Cheng Li, 2017. "Investigation of the Impacts of Urban Land Use Patterns on Energy Consumption in China: A Case Study of 20 Provincial Capital Cities," Sustainability, MDPI, vol. 9(8), pages 1-22, August.
    6. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    7. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    8. Koçak, Emrah & Önderol, Seyit & Khan, Kamran, 2021. "Structural change, modernization, total factor productivity, and natural resources sustainability: An assessment with quantile and non-quantile estimators," Resources Policy, Elsevier, vol. 74(C).
    9. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2021. "Assessing energy poverty and its effect on CO2 emissions: The case of China," Energy Economics, Elsevier, vol. 97(C).
    10. Mladenović, Igor & Sokolov-Mladenović, Svetlana & Milovančević, Milos & Marković, Dušan & Simeunović, Nenad, 2016. "Management and estimation of thermal comfort, carbon dioxide emission and economic growth by support vector machine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 466-476.
    11. Haiyan Lei & Suiping Zeng & Aihemaiti Namaiti & Jian Zeng, 2023. "The Impacts of Road Traffic on Urban Carbon Emissions and the Corresponding Planning Strategies," Land, MDPI, vol. 12(4), pages 1-20, March.
    12. Zhu, Huiming & Duan, Lijun & Guo, Yawei & Yu, Keming, 2016. "The effects of FDI, economic growth and energy consumption on carbon emissions in ASEAN-5: Evidence from panel quantile regression," Economic Modelling, Elsevier, vol. 58(C), pages 237-248.
    13. Wu, Rong & Wang, Jieyu & Wang, Shaojian & Feng, Kuishuang, 2021. "The drivers of declining CO2 emissions trends in developed nations using an extended STIRPAT model: A historical and prospective analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Kumar, Sandeep & Muhuri, Pranab K., 2019. "A novel GDP prediction technique based on transfer learning using CO2 emission dataset," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Jing Li & Kevin Lo & Pingyu Zhang & Meng Guo, 2016. "Consumer Travel Behaviors and Transport Carbon Emissions: A Comparative Study of Commercial Centers in Shenyang, China," Energies, MDPI, vol. 9(10), pages 1-13, September.
    16. Xu, Chao & Haase, Dagmar & Su, Meirong & Yang, Zhifeng, 2019. "The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness," Applied Energy, Elsevier, vol. 254(C).
    17. Yahui Guang & Yongbin Huang, 2022. "Urban Form and Household Energy Consumption: Evidence from China Panel Data," Land, MDPI, vol. 11(8), pages 1-15, August.
    18. Nasreen, Samia & Anwar, Sofia & Ozturk, Ilhan, 2017. "Financial stability, energy consumption and environmental quality: Evidence from South Asian economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1105-1122.
    19. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    20. Dimelis, Sophia & Giotopoulos, Ioannis & Louri, Helen, 2015. "Can firms grow without credit?: evidence from the Euro Area, 2005-2011: a quantile panel analysis," LSE Research Online Documents on Economics 61157, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:981-:d:1136093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.