IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i2p437-d1061267.html
   My bibliography  Save this article

Analysis of Spatiotemporal Variation and Influencing Factors of Land-Use Carbon Emissions in Nine Provinces of the Yellow River Basin Based on the LMDI Model

Author

Listed:
  • Qingxiang Meng

    (School of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China)

  • Yanna Zheng

    (School of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China)

  • Qi Liu

    (School of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China)

  • Baolu Li

    (School of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China)

  • Hejie Wei

    (School of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China)

Abstract

The Yellow River Basin assumes an important ecological and economic function in China. The study of carbon emissions from land use in the nine provinces (regions) of the pathway is important to achieve carbon reduction. Based on the dynamic data of land use, energy, and economic changes in nine provinces (regions) for the past 30 years from 1990 to 2018, this study analyzed the spatial and temporal evolution characteristics of land-use carbon emissions by using the carbon emission coefficient method in the IPCC inventory method and evaluating the low-carbon development model of the nine provinces (regions) by land-use carbon emission intensity. Finally, the LMDI model was used to analyze the factors influencing land-use carbon emissions. The results showed that: (1) in the past 30 years, the net carbon emissions have shown a continuously increasing trend, and the difference in the spatial distribution of carbon emissions in different periods was obvious. The carbon sink effect was not significant enough to offset the carbon emissions generated. (2) The continuously decreasing carbon emission intensity values per unit of GDP indicate that the coordination between land-use and economic development was getting better. (3) The factors of population size, economic size, and land-use structure accelerated land-use carbon emissions, whereas land-use efficiency limited land-use carbon emissions. Accordingly, this paper puts forward some corresponding policy suggestions.

Suggested Citation

  • Qingxiang Meng & Yanna Zheng & Qi Liu & Baolu Li & Hejie Wei, 2023. "Analysis of Spatiotemporal Variation and Influencing Factors of Land-Use Carbon Emissions in Nine Provinces of the Yellow River Basin Based on the LMDI Model," Land, MDPI, vol. 12(2), pages 1-15, February.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:437-:d:1061267
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/2/437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/2/437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    2. Haiming Yan & Xin Guo & Shuqin Zhao & Huicai Yang, 2022. "Variation of Net Carbon Emissions from Land Use Change in the Beijing-Tianjin-Hebei Region during 1990–2020," Land, MDPI, vol. 11(7), pages 1-15, June.
    3. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    4. Ferdinand Vinuya & Ferdinand DiFurio & Erica Sandoval, 2010. "A decomposition analysis of CO2 emissions in the United States," Applied Economics Letters, Taylor & Francis Journals, vol. 17(10), pages 925-931.
    5. R. A. Houghton, 2002. "Magnitude, distribution and causes of terrestrial carbon sinks and some implications for policy," Climate Policy, Taylor & Francis Journals, vol. 2(1), pages 71-88, March.
    6. Haoran Yang & Hao Zheng & Hongguang Liu & Qun Wu, 2019. "NonLinear Effects of Environmental Regulation on Eco-Efficiency under the Constraint of Land Use Carbon Emissions: Evidence Based on a Bootstrapping Approach and Panel Threshold Model," IJERPH, MDPI, vol. 16(10), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhaojing & Jiang, Qingzhe & Dong, Kangyin & Mubarik, Muhammad Shujaat & Dong, Xiucheng, 2020. "Decomposition of the US CO2 emissions and its mitigation potential: An aggregate and sectoral analysis," Energy Policy, Elsevier, vol. 147(C).
    2. Thomas R. Sadler & Schuyler B. Bucher & Dikssha Sehgal, 2022. "The Driving Forces of Energy-Related CO2 Emissions in the United States: A Decomposition Analysis," Energy and Environment Research, Canadian Center of Science and Education, vol. 12(2), pages 1-1, December.
    3. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    4. Román-Collado, Rocío & Colinet, María José, 2018. "Are labour productivity and residential living standards drivers of the energy consumption changes?," Energy Economics, Elsevier, vol. 74(C), pages 746-756.
    5. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    6. Kristiana Dolge & Dagnija Blumberga, 2023. "Transitioning to Clean Energy: A Comprehensive Analysis of Renewable Electricity Generation in the EU-27," Energies, MDPI, vol. 16(18), pages 1-27, September.
    7. Baležentis, Tomas & Li, Tianxiang & Chen, Xueli, 2021. "Has agricultural labor restructuring improved agricultural labor productivity in China? A decomposition approach," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    8. Mousavi, Babak & Lopez, Neil Stephen A. & Biona, Jose Bienvenido Manuel & Chiu, Anthony S.F. & Blesl, Markus, 2017. "Driving forces of Iran's CO2 emissions from energy consumption: An LMDI decomposition approach," Applied Energy, Elsevier, vol. 206(C), pages 804-814.
    9. Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).
    10. Zhang, Chenjun & Wu, Yusi & Yu, Yu, 2020. "Spatial decomposition analysis of water intensity in China," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    11. Guang, Fengtao & Wen, Le & Sharp, Basil, 2022. "Energy efficiency improvements and industry transition: An analysis of China's electricity consumption," Energy, Elsevier, vol. 244(PA).
    12. Alajmi, Reema Gh, 2021. "Factors that impact greenhouse gas emissions in Saudi Arabia: Decomposition analysis using LMDI," Energy Policy, Elsevier, vol. 156(C).
    13. Zbigniew Golas, 2020. "The Driving Forces of Change in Energy-related CO2 Emissions in the Polish Iron and Steel Industry in 1990-2017," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 94-102.
    14. Caixia Liu & Rui Xu & Kaiji Xu & Yiwen Lin & Yingui Cao, 2023. "Carbon Emission Effects of Land Use in Chaobai River Region of Beijing–Tianjin–Hebei, China," Land, MDPI, vol. 12(6), pages 1-23, June.
    15. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    16. Jie He & Jun Yang, 2023. "Spatial–Temporal Characteristics and Influencing Factors of Land-Use Carbon Emissions: An Empirical Analysis Based on the GTWR Model," Land, MDPI, vol. 12(8), pages 1-23, July.
    17. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    18. Jiabin Chen & Shaobo Wen, 2020. "Implications of Energy Intensity Ratio for Carbon Dioxide Emissions in China," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
    19. Tan, Ruipeng & Lin, Boqiang, 2018. "What factors lead to the decline of energy intensity in China's energy intensive industries?," Energy Economics, Elsevier, vol. 71(C), pages 213-221.
    20. Bianco, V. & Proskuryakova, L. & Starodubtseva, A., 2021. "Energy inequality in the Eurasian Economic Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:437-:d:1061267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.