IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v14y2021i4p161-d530243.html
   My bibliography  Save this article

Modeling Market Order Arrivals on the German Intraday Electricity Market with the Hawkes Process

Author

Listed:
  • Nikolaus Graf von Luckner

    (be.storaged GmbH, Fritz-Bock-Straße 5, GER-26121 Oldenburg, Germany)

  • Rüdiger Kiesel

    (Chair for Energy Trading and Finance, University of Duisburg-Essen, Universitätsstraße 2, GER-45141 Essen, Germany)

Abstract

We use point processes to analyze market order arrivals on the intraday market for hourly electricity deliveries in Germany in the second quarter of 2015. As we distinguish between buys and sells, we work in a multivariate setting. We model the arrivals with a Hawkes process whose baseline intensity comprises either only an exponentially increasing component or a constant in addition to the exponentially increasing component, and whose excitation decays exponentially. Our goodness-of-fit tests indicate that the models where the intensity of each market order type is excited at least by events of the same type are the most promising ones. Based on the Akaike information criterion, the model without a constant in the baseline intensity and only self-excitation is selected in almost 50% of the cases on both market sides. The typical jump size of intensities in case of the arrival of a market order of the same type is quite large, yet rather short lived. Diurnal patterns in the parameters of the baseline intensity and the branching ratio of self-excitation are observable. Contemporaneous relationships between different parameters such as the jump size and decay rate of self and cross-excitation are found.

Suggested Citation

  • Nikolaus Graf von Luckner & Rüdiger Kiesel, 2021. "Modeling Market Order Arrivals on the German Intraday Electricity Market with the Hawkes Process," JRFM, MDPI, vol. 14(4), pages 1-31, April.
  • Handle: RePEc:gam:jjrfmx:v:14:y:2021:i:4:p:161-:d:530243
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/14/4/161/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/14/4/161/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehdi Lallouache & Damien Challet, 2016. "The limits of statistical significance of Hawkes processes fitted to financial data," Quantitative Finance, Taylor & Francis Journals, vol. 16(1), pages 1-11, January.
    2. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    3. Scharff, Richard & Amelin, Mikael, 2016. "Trading behaviour on the continuous intraday market Elbas," Energy Policy, Elsevier, vol. 88(C), pages 544-557.
    4. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    5. Kramer, Anke & Kiesel, Rüdiger, 2021. "Exogenous factors for order arrivals on the intraday electricity market," Energy Economics, Elsevier, vol. 97(C).
    6. Emmanuel Bacry & Jean-Fran�ois Muzy, 2014. "Hawkes model for price and trades high-frequency dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1147-1166, July.
    7. Heidar Eyjolfsson & Dag Tjøstheim, 2018. "Self-exciting jump processes with applications to energy markets," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 373-393, April.
    8. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    9. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    10. Michał Narajewski & Florian Ziel, 2019. "Estimation and Simulation of the Transaction Arrival Process in Intraday Electricity Markets," Energies, MDPI, vol. 12(23), pages 1-16, November.
    11. Marcello Rambaldi & Emmanuel Bacry & Fabrizio Lillo, 2017. "The role of volume in order book dynamics: a multivariate Hawkes process analysis," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 999-1020, July.
    12. Easley, David & O'Hara, Maureen, 1992. "Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    13. Jain, Prem C. & Joh, Gun-Ho, 1988. "The Dependence between Hourly Prices and Trading Volume," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 269-283, September.
    14. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    15. Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. "An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-1689, December.
    16. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
    17. Alan G. Hawkes, 2018. "Hawkes processes and their applications to finance: a review," Quantitative Finance, Taylor & Francis Journals, vol. 18(2), pages 193-198, February.
    18. Micha{l} Narajewski & Florian Ziel, 2019. "Estimation and simulation of the transaction arrival process in intraday electricity markets," Papers 1901.09729, arXiv.org, revised Dec 2019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Deschatre & Xavier Warin, 2023. "A Common Shock Model for multidimensional electricity intraday price modelling with application to battery valuation," Papers 2307.16619, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Martins & Dieter Hendricks, 2016. "The statistical significance of multivariate Hawkes processes fitted to limit order book data," Papers 1604.01824, arXiv.org, revised Apr 2016.
    2. Hai-Chuan Xu & Wei-Xing Zhou, 2020. "Modeling aggressive market order placements with Hawkes factor models," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-12, January.
    3. Jeremy Large, 2004. "Cancellation and uncertainty aversion on limit order books," OFRC Working Papers Series 2004fe04, Oxford Financial Research Centre.
    4. Marcello Rambaldi & Emmanuel Bacry & Fabrizio Lillo, 2016. "The role of volume in order book dynamics: a multivariate Hawkes process analysis," Papers 1602.07663, arXiv.org.
    5. Kramer, Anke & Kiesel, Rüdiger, 2021. "Exogenous factors for order arrivals on the intraday electricity market," Energy Economics, Elsevier, vol. 97(C).
    6. Pankaj Kumar, 2021. "Deep Hawkes Process for High-Frequency Market Making," Papers 2109.15110, arXiv.org.
    7. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    8. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    9. Alfonso Dufour & Robert F. Engle, 2000. "Time and the Price Impact of a Trade," Journal of Finance, American Finance Association, vol. 55(6), pages 2467-2498, December.
    10. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    11. Peng Wu & Marcello Rambaldi & Jean-Franc{c}ois Muzy & Emmanuel Bacry, 2019. "Queue-reactive Hawkes models for the order flow," Papers 1901.08938, arXiv.org.
    12. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org.
    13. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Marked point processes and intensity ratios for limit order book modeling," Papers 2001.08442, arXiv.org.
    14. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of a point-process market-model with a matching engine," Papers 2105.02211, arXiv.org, revised Aug 2021.
    15. Johannes Bleher & Michael Bleher & Thomas Dimpfl, 2020. "From orders to prices: A stochastic description of the limit order book to forecast intraday returns," Papers 2004.11953, arXiv.org, revised May 2021.
    16. Yang, Joey Wenling, 2011. "Transaction duration and asymmetric price impact of trades--Evidence from Australia," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 91-102, January.
    17. Anthony D. Hall & Nikolaus Hautsch, 2004. "A Continuous-Time Measurement of the Buy-Sell Pressure in a Limit Order Book Market," FRU Working Papers 2004/03, University of Copenhagen. Department of Economics. Finance Research Unit.
    18. Thierry Foucault & Ohad Kadan & Eugene Kandel, 2013. "Liquidity Cycles and Make/Take Fees in Electronic Markets," Journal of Finance, American Finance Association, vol. 68(1), pages 299-341, February.
    19. Jondeau, Eric & Lahaye, Jérôme & Rockinger, Michael, 2015. "Estimating the price impact of trades in a high-frequency microstructure model with jumps," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 205-224.
    20. Large, Jeremy, 2007. "Measuring the resiliency of an electronic limit order book," Journal of Financial Markets, Elsevier, vol. 10(1), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:14:y:2021:i:4:p:161-:d:530243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.