IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p2603-d1053308.html
   My bibliography  Save this article

Identification of Key Carbon Emission Industries and Emission Reduction Control Based on Complex Network of Embodied Carbon Emission Transfers: The Case of Hei-Ji-Liao, China

Author

Listed:
  • Shaonan Shan

    (School of Business, Shenyang University, Shenyang 110064, China)

  • Yulong Li

    (School of Business, Shenyang University, Shenyang 110064, China)

  • Zicheng Zhang

    (School of Information Management, Nanjing University, Nanjing 210023, China)

  • Wei Zhu

    (Institute of Industrial and Economic Policy, Beijing Economic and Technological Development Zone (BDA), Beijing 100070, China)

  • Tingting Zhang

    (School of Public Finance and Taxation, Capital University of Economics and Business, Beijing 100070, China)

Abstract

Similar to the problems surrounding carbon transfers that exist in international trade, there are severe carbon emission headaches in regional industrial systems within countries. It is essential for emission reduction control and regional industrial restructuring to clarify the relationship of carbon emissions flows between industrial sectors and identify key carbon-emitting industrial sectors. Supported by the input–output model (I-O model) and social network analysis (SNA), this research adopts input–output tables (2017), energy balance sheets (2021) and the energy statistics yearbooks (2021) of the three Chinese provinces of Hei-Ji-Liao to construct an Embodied carbon emission transfer network (ECETN) and determine key carbon-emitting industrial sectors with a series of complex network measurement indicators and analysis methods. The key abatement control pathways are obtained based on the flow relationships between the chains in the industrial system. The results demonstrate that the ECETNs in all three provinces of Hei-Ji-Liao are small-world in nature with scale-free characteristics (varying according to the power function). The key carbon emission industry sectors in the three provinces are identified through centrality, influence, aggregation and diffusion, comprising coal mining, the chemical industry, metal products industry, machinery manufacturing and transportation in Liaoning Province; coal mining, non-metal mining, non-metal products, metal processing and the electricity industry in Jilin Province; and agriculture, metal processing and machinery manufacturing in Heilongjiang. Additionally, key emission reduction control pathways in the three provinces are also identified based on embodied carbon emission flow relationships between industry sectors. Following the above findings, corresponding policy recommendations are proposed to tackle the responsibility of carbon reduction among industrial sectors in the province. Moreover, these findings provide some theoretical support and policy considerations for policymakers.

Suggested Citation

  • Shaonan Shan & Yulong Li & Zicheng Zhang & Wei Zhu & Tingting Zhang, 2023. "Identification of Key Carbon Emission Industries and Emission Reduction Control Based on Complex Network of Embodied Carbon Emission Transfers: The Case of Hei-Ji-Liao, China," IJERPH, MDPI, vol. 20(3), pages 1-28, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2603-:d:1053308
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/2603/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/2603/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fang, Delin & Chen, Bin, 2019. "Information-based ecological network analysis for carbon emissions," Applied Energy, Elsevier, vol. 238(C), pages 45-53.
    2. Lin, Boqiang & Raza, Muhammad Yousaf, 2020. "Coal and economic development in Pakistan: A necessity of energy source," Energy, Elsevier, vol. 207(C).
    3. Jean-Marie Grether & Nicole A. Mathys & Jaime de Melo, 2007. "Trade, Technique and Composition Effects: What is Behind the Fall in World-Wide SO2 Emissions 1990-2000?," Working Papers 2007.93, Fondazione Eni Enrico Mattei.
    4. Cole, Matthew A. & Elliott, Robert J.R. & Okubo, Toshihiro & Zhang, Liyun, 2021. "Importing, outsourcing and pollution offshoring," Energy Economics, Elsevier, vol. 103(C).
    5. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    6. Jeffrey A. Frankel & Andrew K. Rose, 2005. "Is Trade Good or Bad for the Environment? Sorting Out the Causality," The Review of Economics and Statistics, MIT Press, vol. 87(1), pages 85-91, February.
    7. Shi, Jianglan & Li, Huajiao & Guan, Jianhe & Sun, Xiaoqi & Guan, Qing & Liu, Xiaojia, 2017. "Evolutionary features of global embodied energy flow between sectors: A complex network approach," Energy, Elsevier, vol. 140(P1), pages 395-405.
    8. Xiuzhen Li & Xiangjin Wang & Yun Zhang & Xiao Miao, 2021. "Spatial Differences in Emission Reduction Effect of Servitization of Manufacturing Industry Export in China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(8), pages 2331-2355, June.
    9. Werner Antweiler & Brian R. Copeland & M. Scott Taylor, 2001. "Is Free Trade Good for the Environment?," American Economic Review, American Economic Association, vol. 91(4), pages 877-908, September.
    10. Yan, Yunfeng & Wang, Ran & Zheng, Xiuxiu & Zhao, Zhongxiu, 2020. "Carbon endowment and trade-embodied carbon emissions in global value chains: Evidence from China," Applied Energy, Elsevier, vol. 277(C).
    11. Chen, B. & Li, J.S. & Wu, X.F. & Han, M.Y. & Zeng, L. & Li, Z. & Chen, G.Q., 2018. "Global energy flows embodied in international trade: A combination of environmentally extended input–output analysis and complex network analysis," Applied Energy, Elsevier, vol. 210(C), pages 98-107.
    12. Deng, Guangyao & Xu, Yan, 2017. "Accounting and structure decomposition analysis of embodied carbon trade: A global perspective," Energy, Elsevier, vol. 137(C), pages 140-151.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    2. Nicole A. MATHYS & Jaime DE MELO, 2010. "Trade and Climate Change: The Challenges Ahead," Working Papers P14, FERDI.
    3. Yuping Deng & Helian Xu, 2015. "International Direct Investment and Transboundary Pollution: An Empirical Analysis of Complex Networks," Sustainability, MDPI, vol. 7(4), pages 1-25, April.
    4. Gani, Azmat & Scrimgeour, Frank, 2014. "Modeling governance and water pollution using the institutional ecological economic framework," Economic Modelling, Elsevier, vol. 42(C), pages 363-372.
    5. Cui, Jingbo & Lapan, Harvey E. & Moschini, GianCarlo, 2012. "Are exporters more environmentally friendly than non-exporters? Theory and evidence," ISU General Staff Papers 201210040700001076, Iowa State University, Department of Economics.
    6. Yiping Sun & Xiangyi Li & Tengyuan Zhang & Jiawei Fu, 2022. "Does Trade Policy Uncertainty Exacerbate Environmental Pollution?—Evidence from Chinese Cities," IJERPH, MDPI, vol. 19(4), pages 1-21, February.
    7. Tang, John P., 2015. "Pollution havens and the trade in toxic chemicals: Evidence from U.S. trade flows," Ecological Economics, Elsevier, vol. 112(C), pages 150-160.
    8. Ajayi, Patricia & Ogunrinola, Adedeji, 2020. "Growth, Trade Openness and Environmental Degradation in Nigeria," MPRA Paper 100713, University Library of Munich, Germany.
    9. Shahbaz, Muhammad & Nasreen, Samia & Ahmed, Khalid & Hammoudeh, Shawkat, 2017. "Trade openness–carbon emissions nexus: The importance of turning points of trade openness for country panels," Energy Economics, Elsevier, vol. 61(C), pages 221-232.
    10. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    11. Roy, Jayjit, 2017. "On the environmental consequences of intra-industry trade," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 50-67.
    12. Natalia Zugravu-Soilita, 2019. "Trade in Environmental Goods and Air Pollution: A Mediation Analysis to Estimate Total, Direct and Indirect Effects," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1125-1162, November.
    13. Subhayu Bandyopadhyay & Sumon Bhaumik & Howard J. Wall, 2013. "Biofuel Subsidies and International Trade," Economics and Politics, Wiley Blackwell, vol. 25(2), pages 181-199, July.
    14. Ulltveit-Moe, Karen Helene & Forslid, Rikard & Okubo, Toshihiro, 2011. "Why are firms that export cleaner? International trade and CO2 emissions," CEPR Discussion Papers 8583, C.E.P.R. Discussion Papers.
    15. Dang, Hai-Anh H. & Trinh, Trong-Anh, 2020. "Does the COVID-19 Pandemic Improve Global Air Quality? New Cross-national Evidence on Its Unintended Consequences," GLO Discussion Paper Series 606, Global Labor Organization (GLO).
    16. Mansor H. Ibrahim & Siong Hook Law, 2016. "Institutional Quality and CO 2 Emission–Trade Relations: Evidence from Sub-Saharan Africa," South African Journal of Economics, Economic Society of South Africa, vol. 84(2), pages 323-340, June.
    17. Martínez-Zarzoso, Inmaculada & Oueslati, Walid, 2016. "Are deep and comprehensive regional trade agreements helping to reduce air pollution?," University of Göttingen Working Papers in Economics 292, University of Goettingen, Department of Economics.
    18. Jie HE, 2005. "Economic Determinants for China’s Industrial SO2 Emission: Reduced vs. Structural form and the role of international trade," Working Papers 200505, CERDI.
    19. Octavio Fernández-Amador & Joseph F. Francois & Doris A. Oberdabernig & Patrick Tomberger, 2020. "Economic growth, sectoral structures, and environmental methane footprints," Applied Economics, Taylor & Francis Journals, vol. 52(13), pages 1460-1475, March.
    20. Jinghan Chen & Wen Zhou & Hongtao Yang, 2019. "Is Embodied Energy a Better Starting Point for Solving Energy Security Issues?—Based on an Overview of Embodied Energy-Related Research," Sustainability, MDPI, vol. 11(16), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2603-:d:1053308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.