IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2022i1p709-d1020755.html
   My bibliography  Save this article

The Acoustic Environment and University Students’ Satisfaction with the Online Education Method during the COVID-19 Lockdown

Author

Listed:
  • Virginia Puyana-Romero

    (Department of Sound and Acoustic Engineering, Universidad de Las Américas, Quito EC170125, Ecuador
    Laboratory of Acoustic Engineering, Universidad de Cádiz, 11510 Puerto Real, Spain)

  • Angela María Díaz-Márquez

    (Place, Environment and Society Research Group, Universidad de Las Américas, Quito EC170125, Ecuador)

  • Giuseppe Ciaburro

    (Department of Architecture and Industrial Design, Università degli Studi della Campania Luigi Vanvitelli, Borgo San Lorenzo, 81031 Aversa, Italy)

  • Ricardo Hernández-Molina

    (Laboratory of Acoustic Engineering, Universidad de Cádiz, 11510 Puerto Real, Spain)

Abstract

The acoustic environment has been pointed out as a possible distractor during student activities in the online academic modality; however, it has not been specifically studied, nor has it been studied in relation to parameters frequently used in academic-quality evaluations. The objective of this study is to characterize the acoustic environment and relate it to students’ satisfaction with the online learning modality. For that, three artificial neural networks were calculated, using as target variables the students’ satisfaction and the noise interference with autonomous and synchronous activities, using acoustic variables as predictors. The data were obtained during the COVID-19 lockdown, through an online survey addressed to the students of the Universidad de Las Américas (Quito, Ecuador). Results show that the noise interference with comprehensive reading or with making exams and that the frequency of noises, which made the students lose track of the lesson, were relevant factors for students’ satisfaction. The perceived loudness also had a remarkable influence on engaging in autonomous and synchronous activities. The performance of the models on students’ satisfaction and on the noise interference with autonomous and synchronous activities was satisfactory given that it was built only with acoustic variables, with correlation coefficients of 0.567, 0.853, and 0.865, respectively.

Suggested Citation

  • Virginia Puyana-Romero & Angela María Díaz-Márquez & Giuseppe Ciaburro & Ricardo Hernández-Molina, 2022. "The Acoustic Environment and University Students’ Satisfaction with the Online Education Method during the COVID-19 Lockdown," IJERPH, MDPI, vol. 20(1), pages 1-27, December.
  • Handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:709-:d:1020755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/1/709/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/1/709/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    2. Virginia Puyana-Romero & Luigi Maffei & Giovanni Brambilla & Daniel Nuñez-Solano, 2021. "Sound Water Masking to Match a Waterfront Soundscape with the Users’ Expectations: The Case Study of the Seafront in Naples, Italy," Sustainability, MDPI, vol. 13(1), pages 1-19, January.
    3. Virginia Puyana-Romero & Jose Luis Cueto & Giuseppe Ciaburro & Luis Bravo-Moncayo & Ricardo Hernandez-Molina, 2022. "Community Response to Noise from Hot-Spots at a Major Road in Quito (Ecuador) and Its Application for Identification and Ranking These Areas," IJERPH, MDPI, vol. 19(3), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    2. Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    3. Ramón Ferri-García & María del Mar Rueda, 2022. "Variable selection in Propensity Score Adjustment to mitigate selection bias in online surveys," Statistical Papers, Springer, vol. 63(6), pages 1829-1881, December.
    4. Ghosh, Indranil & Chaudhuri, Tamal Datta & Alfaro-Cortés, Esteban & Gámez, Matías & García, Noelia, 2022. "A hybrid approach to forecasting futures prices with simultaneous consideration of optimality in ensemble feature selection and advanced artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    5. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    6. Sangjin Kim & Jong-Min Kim, 2019. "Two-Stage Classification with SIS Using a New Filter Ranking Method in High Throughput Data," Mathematics, MDPI, vol. 7(6), pages 1-16, May.
    7. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    8. Zhao-Yue Chen & Hervé Petetin & Raúl Fernando Méndez Turrubiates & Hicham Achebak & Carlos Pérez García-Pando & Joan Ballester, 2024. "Population exposure to multiple air pollutants and its compound episodes in Europe," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Bram Janssens & Matthias Bogaert & Mathijs Maton, 2023. "Predicting the next Pogačar: a data analytical approach to detect young professional cycling talents," Annals of Operations Research, Springer, vol. 325(1), pages 557-588, June.
    10. Cooray, Upul & Watt, Richard G. & Tsakos, Georgios & Heilmann, Anja & Hariyama, Masanori & Yamamoto, Takafumi & Kuruppuarachchige, Isuruni & Kondo, Katsunori & Osaka, Ken & Aida, Jun, 2021. "Importance of socioeconomic factors in predicting tooth loss among older adults in Japan: Evidence from a machine learning analysis," Social Science & Medicine, Elsevier, vol. 291(C).
    11. Simon Besnard & Nuno Carvalhais & M Altaf Arain & Andrew Black & Benjamin Brede & Nina Buchmann & Jiquan Chen & Jan G P W Clevers & Loïc P Dutrieux & Fabian Gans & Martin Herold & Martin Jung & Yoshik, 2019. "Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-22, February.
    12. Francesco Sartor & Jonathan P. Moore & Hans-Peter Kubis, 2021. "Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    13. Nawin Raj, 2022. "Prediction of Sea Level with Vertical Land Movement Correction Using Deep Learning," Mathematics, MDPI, vol. 10(23), pages 1-23, November.
    14. Piotr Pomorski & Denise Gorse, 2023. "Improving Portfolio Performance Using a Novel Method for Predicting Financial Regimes," Papers 2310.04536, arXiv.org.
    15. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).
    16. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    17. Abolfazl Mollalo & Kiara M. Rivera & Behzad Vahedi, 2020. "Artificial Neural Network Modeling of Novel Coronavirus (COVID-19) Incidence Rates across the Continental United States," IJERPH, MDPI, vol. 17(12), pages 1-13, June.
    18. Marc Deffland & Claudia Spies & Bjoern Weiss & Niklas Keller & Mirjam Jenny & Jochen Kruppa & Felix Balzer, 2020. "Effects of pain, sedation and delirium monitoring on clinical and economic outcome: A retrospective study," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-14, September.
    19. Faisal Alsayegh & Moh A Alkhamis & Fatima Ali & Sreeja Attur & Nicholas M Fountain-Jones & Mohammad Zubaid, 2022. "Anemia or other comorbidities? using machine learning to reveal deeper insights into the drivers of acute coronary syndromes in hospital admitted patients," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-15, January.
    20. Aras, Serkan & Hanifi Van, M., 2022. "An interpretable forecasting framework for energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 328(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:709-:d:1020755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.