IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p13812-d951543.html
   My bibliography  Save this article

Agricultural Production Space Suitability in China: Spatial Pattern, Influencing Factors and Optimization Strategies

Author

Listed:
  • Yuxin Pan

    (School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China)

  • Yuancheng Lin

    (School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China)

  • Ren Yang

    (School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China)

Abstract

The paper uses the analytic hierarchy process (AHP), spatial autocorrelation analysis, and geographic detectors to reveal the spatial pattern of agricultural production space suitability in China, explores the impact mechanism of agricultural production development, and explores the optimization and promotion strategies for the development of regional agricultural production in various regions in the future. The results show that the resource and environmental carrying capacity, and the agricultural production space suitability under the direction of China’s agricultural production function, show a ‘polarization’ development trend in space, with high levels in the southeast and low levels in the northwest, with significant spatial agglomeration. The factors influencing the suitability of agricultural production have significant spatial differentiation laws in the Nine Agricultural Areas of China. Climate change factors are the dominant factors affecting the areas with poor resource endowment and traditional agricultural areas in the northwest. Factors that reflect the level of urbanization are the main factors that affect the agricultural production space suitability in the middle and lower reaches of the Yangtze River and South China. China’s agricultural production spatial suitability areas can be divided into nine types of suitable geographical areas. In the future, the impacts of climate change and urbanization on agricultural production space should be considered, and strategies should be taken, according to local conditions, in different regions to improve their suitability.

Suggested Citation

  • Yuxin Pan & Yuancheng Lin & Ren Yang, 2022. "Agricultural Production Space Suitability in China: Spatial Pattern, Influencing Factors and Optimization Strategies," IJERPH, MDPI, vol. 19(21), pages 1-19, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:13812-:d:951543
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/13812/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/13812/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Per Pinstrup-Andersen, 2009. "Food security: definition and measurement," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 1(1), pages 5-7, February.
    2. Xuebin Zhang & Francis W. Zwiers & Gabriele C. Hegerl & F. Hugo Lambert & Nathan P. Gillett & Susan Solomon & Peter A. Stott & Toru Nozawa, 2007. "Detection of human influence on twentieth-century precipitation trends," Nature, Nature, vol. 448(7152), pages 461-465, July.
    3. William Nordhaus, 2019. "Climate Change: The Ultimate Challenge for Economics," American Economic Review, American Economic Association, vol. 109(6), pages 1991-2014, June.
    4. Richard J. Vyn, 2012. "Examining for Evidence of the Leapfrog Effect in the Context of Strict Agricultural Zoning," Land Economics, University of Wisconsin Press, vol. 88(3), pages 457-477.
    5. Xu, Xuegong & Hou, Lisheng & Lin, Huiping & Liu, Wenzheng, 2006. "Zoning of sustainable agricultural development in China," Agricultural Systems, Elsevier, vol. 87(1), pages 38-62, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Waldemar Bojar & Wojciech Żarski & Renata Kuśmierek-Tomaszewska & Jacek Żarski & Piotr Baranowski & Jaromir Krzyszczak & Krzysztof Lamorski & Cezary Sławiński & Konstadinos Mattas & Christos Staboulis, 2023. "A Comprehensive Approach to Assess the Impact of Agricultural Production Factors on Selected Ecosystem Services in Poland," Resources, MDPI, vol. 12(9), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Chen-Fu & Cheng, Chia-Yi, 2023. "Does the change of agricultural zoning policy achieve farmland protection in Taiwan?," Land Use Policy, Elsevier, vol. 126(C).
    2. Tambo, Justice A. & Wünscher, Tobias, 2016. "Beyond adoption: welfare effects of farmer innovation behavior in Ghana," Discussion Papers 235297, University of Bonn, Center for Development Research (ZEF).
    3. Ishak Norziha & Abdullah Rosazlin & Rosli Noor Sharina Mohd & Halim Nur Sa’adah Abdul & Majid Hazreenbdul & Ariffin Fazilah, 2022. "Challenges of Urban Garden Initiatives for Food Security in Kuala Lumpur, Malaysia," Quaestiones Geographicae, Sciendo, vol. 41(4), pages 57-72, December.
    4. Manyong, Victor & Bokanga, Mpoko & Akonkwa Nyamuhirwa, Dieu-Merci & Bamba, Zoumana & Adeoti, Razack & Mwepu, Gregoire & Cole, Steven M. & Dontsop Nguezet, Paul Martin, 2022. "COVID-19 outbreak and rural household food security in the Western Democratic Republic of the Congo," World Development Perspectives, Elsevier, vol. 28(C).
    5. Yaolong Liu & Guorui Feng & Ye Xue & Huaming Zhang & Ruoguang Wang, 2015. "Small-scale natural disaster risk scenario analysis: a case study from the town of Shuitou, Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2167-2183, February.
    6. Renata Baborska & Emilio Hernandez & Emiliano Magrini & Cristian Morales-Opazo, 2020. "The impact of financial inclusion on rural food security experience: A perspective from low-and middle-income countries," Review of Development Finance Journal, Chartered Institute of Development Finance, vol. 10(2), pages 1-18.
    7. Fremstad, Anders & Paul, Mark, 2022. "Neoliberalism and climate change: How the free-market myth has prevented climate action," Ecological Economics, Elsevier, vol. 197(C).
    8. Michael Peneder & Spyros Arvanitis & Christian Rammer & Tobias Stucki & Martin Wörter, 2022. "Policy instruments and self-reported impacts of the adoption of energy saving technologies in the DACH region," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 49(2), pages 369-404, May.
    9. Hanna Dudek & Joanna Myszkowska-Ryciak & Agnieszka Wojewódzka-Wiewiórska, 2021. "Profiles of Food Insecurity: Similarities and Differences across Selected CEE Countries," Energies, MDPI, vol. 14(16), pages 1-19, August.
    10. Stevens, Andrew W., 2017. "Quinoa quandary: Cultural tastes and nutrition in Peru," Food Policy, Elsevier, vol. 71(C), pages 132-142.
    11. Martin, R. & de Haas, Ralph & Muuls, Mirabelle & Schweiger, Helena, 2021. "Managerial and Financial Barriers to the Net-Zero Transition," Other publications TiSEM f0572d8a-40d7-458f-bb43-8, Tilburg University, School of Economics and Management.
    12. Jascha Lehmann & Dim Coumou & Katja Frieler, 2015. "Increased record-breaking precipitation events under global warming," Climatic Change, Springer, vol. 132(4), pages 501-515, October.
    13. Munir Ahmed & Ghulam Mustafa & Muhammad Iqbal, 2016. "Impact of Farm Households’ Adaptations to Climate Change on Food Security: Evidence from Different Agro-ecologies of Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 55(4), pages 561-588.
    14. Gabriel Ménard, 2013. "Environmental non-governmental organizations: key players in development in a changing climate—a case study of Mali," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(1), pages 117-131, February.
    15. Gitonga, Zachary M. & De Groote, Hugo & Kassie, Menale & Tefera, Tadele, 2013. "Impact of metal silos on households’ maize storage, storage losses and food security: An application of a propensity score matching," Food Policy, Elsevier, vol. 43(C), pages 44-55.
    16. Strand,Jon, 2022. "Prospects for Markets for Internationally Transferred Mitigation Outcomes under theParis Agreement," Policy Research Working Paper Series 10045, The World Bank.
    17. Torres-Brito, David Israel & Cruz-Aké, Salvador & Venegas-Martínez, Francisco, 2023. "Impacto de los contaminantes por gases de efecto invernadero en el crecimiento económico en 86 países (1990-2019): Sobre la curva inversa de Kuznets [Impact of the Effect of Greenhouse Gas Pollutan," MPRA Paper 119031, University Library of Munich, Germany.
    18. Ma, Rui & Marshall, Ben R. & Nguyen, Hung T. & Nguyen, Nhut H. & Visaltanachoti, Nuttawat, 2022. "Climate events and return comovement," Journal of Financial Markets, Elsevier, vol. 61(C).
    19. Gouriéroux, C. & Monfort, A. & Renne, J.-P., 2022. "Required Capital for Long-Run Risks," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    20. Olutumise, A. I. & Abiodun, T. C. & Ekundayo, B. P., 2021. "Diversification Of Livelihood And Food Security Nexus Among Rural Households In Ondo State, Nigeria," Journal of Rural Economics and Development, University of Ibadan, Department of Agricultural Economics, vol. 23(1), September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:13812-:d:951543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.