IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i6p2914-d515801.html
   My bibliography  Save this article

Influential Factors and Spatiotemporal Characteristics of Carbon Intensity on Industrial Sectors in China

Author

Listed:
  • Ying Han

    (School of Business Administration, Northeastern University, Shenyang 110169, China)

  • Baoling Jin

    (School of Business Administration, Northeastern University, Shenyang 110169, China)

  • Xiaoyuan Qi

    (School of Business Administration, Northeastern University, Shenyang 110169, China)

  • Huasen Zhou

    (School of Business Administration, Northeastern University, Shenyang 110169, China)

Abstract

Based on the extended STIRPAT model and panel data from 2005 to 2015 in 20 industrial sectors, this study investigates the influential factors of carbon intensity, including employee, industry added value, fixed-assets investment, coal consumption, and resource tax. Meanwhile, by expanding the spatial weight matrix and using the Spatial Durbin Model, we reveal the spatiotemporal characteristics of carbon intensity. The results indicate that Manufacturing of Oil Processing and Coking Processing (S7), Manufacturing of Non-metal Products (S10), Smelting and Rolling Process of Metal (S11), and Electricity, Gas, Water, Sewage Treatment, Waste and Remediation (S17) contribute most to carbon intensity in China. The carbon intensity of 20 industrial sectors presents a spatial agglomeration characteristic. Meanwhile, industry added value inhibits the carbon intensity; however, employee, coal consumption, and resource tax promote carbon intensity. Finally, coal consumption appears to have spillover effects, and the employee has an insignificant impact on the carbon intensity of industrial sectors.

Suggested Citation

  • Ying Han & Baoling Jin & Xiaoyuan Qi & Huasen Zhou, 2021. "Influential Factors and Spatiotemporal Characteristics of Carbon Intensity on Industrial Sectors in China," IJERPH, MDPI, vol. 18(6), pages 1-18, March.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:6:p:2914-:d:515801
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/6/2914/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/6/2914/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Achour, Houda & Belloumi, Mounir, 2016. "Decomposing the influencing factors of energy consumption in Tunisian transportation sector using the LMDI method," Transport Policy, Elsevier, vol. 52(C), pages 64-71.
    2. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    3. R. Pace & James LeSage, 2009. "A sampling approach to estimate the log determinant used in spatial likelihood problems," Journal of Geographical Systems, Springer, vol. 11(3), pages 209-225, September.
    4. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    5. Zhao, Xingrong & Zhang, Xi & Shao, Shuai, 2016. "Decoupling CO2 emissions and industrial growth in China over 1993–2013: The role of investment," Energy Economics, Elsevier, vol. 60(C), pages 275-292.
    6. Ipek Tunç, G. & Türüt-AsIk, Serap & AkbostancI, Elif, 2009. "A decomposition analysis of CO2 emissions from energy use: Turkish case," Energy Policy, Elsevier, vol. 37(11), pages 4689-4699, November.
    7. Yang, Lisha & Lin, Boqiang, 2016. "Carbon dioxide-emission in China׳s power industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 258-267.
    8. Yan, Qingyou & Zhang, Qian & Zou, Xin, 2016. "Decomposition analysis of carbon dioxide emissions in China's regional thermal electricity generation, 2000–2020," Energy, Elsevier, vol. 112(C), pages 788-794.
    9. Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
    10. Lu Wan & Zi-Long Wang & Jhony Choon Yeong Ng, 2016. "Measurement Research on the Decoupling Effect of Industries’ Carbon Emissions—Based on the Equipment Manufacturing Industry in China," Energies, MDPI, vol. 9(11), pages 1-17, November.
    11. Liu, Nan & Ma, Zujun & Kang, Jidong & Su, Bin, 2019. "A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015," Energy Policy, Elsevier, vol. 129(C), pages 410-421.
    12. Geng, Yong & Zhao, Hongyan & Liu, Zhu & Xue, Bing & Fujita, Tsuyoshi & Xi, Fengming, 2013. "Exploring driving factors of energy-related CO2 emissions in Chinese provinces: A case of Liaoning," Energy Policy, Elsevier, vol. 60(C), pages 820-826.
    13. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.
    14. Liu, Nan & Ma, Zujun & Kang, Jidong, 2015. "Changes in carbon intensity in China's industrial sector: Decomposition and attribution analysis," Energy Policy, Elsevier, vol. 87(C), pages 28-38.
    15. Zhao, Min & Tan, Lirong & Zhang, Weiguo & Ji, Minhe & Liu, Yuan & Yu, Lizhong, 2010. "Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method," Energy, Elsevier, vol. 35(6), pages 2505-2510.
    16. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    17. Wang, Zhaohua & Zhang, Bin & Liu, Tongfan, 2016. "Empirical analysis on the factors influencing national and regional carbon intensity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 34-42.
    18. Yang, Lin & Yang, Yuantao & Zhang, Xian & Tang, Kai, 2018. "Whether China's industrial sectors make efforts to reduce CO2 emissions from production? - A decomposed decoupling analysis," Energy, Elsevier, vol. 160(C), pages 796-809.
    19. Qu, Xi & Lee, Lung-fei, 2012. "LM tests for spatial correlation in spatial models with limited dependent variables," Regional Science and Urban Economics, Elsevier, vol. 42(3), pages 430-445.
    20. Wang, Shaojian & Fang, Chuanglin & Wang, Yang, 2016. "Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors: An empirical analysis based on provincial panel data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 505-515.
    21. Kang, Jidong & Zhao, Tao & Liu, Nan & Zhang, Xin & Xu, Xianshuo & Lin, Tao, 2014. "A multi-sectoral decomposition analysis of city-level greenhouse gas emissions: Case study of Tianjin, China," Energy, Elsevier, vol. 68(C), pages 562-571.
    22. Jin, Fei & Lee, Lung-fei, 2012. "Approximated likelihood and root estimators for spatial interaction in spatial autoregressive models," Regional Science and Urban Economics, Elsevier, vol. 42(3), pages 446-458.
    23. Wang, Ping & Wu, Wanshui & Zhu, Bangzhu & Wei, Yiming, 2013. "Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China," Applied Energy, Elsevier, vol. 106(C), pages 65-71.
    24. Kim, Kyunam & Kim, Yeonbae, 2012. "International comparison of industrial CO2 emission trends and the energy efficiency paradox utilizing production-based decomposition," Energy Economics, Elsevier, vol. 34(5), pages 1724-1741.
    25. J. Paul Elhorst, 2003. "Specification and Estimation of Spatial Panel Data Models," International Regional Science Review, , vol. 26(3), pages 244-268, July.
    26. Shao, Shuai & Yang, Lili & Gan, Chunhui & Cao, Jianhua & Geng, Yong & Guan, Dabo, 2016. "Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO2 emission changes: A case study for Shanghai (China)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 516-536.
    27. Lisheng Zeng, 2008. "Effects of changes in outputs and in prices on the economic system: an input–output analysis using the spectral theory of nonnegative matrices," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 34(3), pages 441-471, March.
    28. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    29. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quito, Byron & del Río-Rama, María de la Cruz & Álvarez- García, José & Bekun, Festus Victor, 2023. "Spatiotemporal influencing factors of energy efficiency in 43 european countries: A spatial econometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Xin Xu & Yuming Shen & Hanchu Liu, 2022. "What Cause Large Spatiotemporal Differences in Carbon Intensity of Energy-Intensive Industries in China? Evidence from Provincial Data during 2000–2019," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    3. He Zhang & Jingyi Peng & Rui Wang & Yuanyuan Guo & Jing He & Dahlia Yu & Jianxun Zhang, 2023. "Efficiency and Potential Evaluation to Promote Differentiated Low-Carbon Management in Chinese Counties," IJERPH, MDPI, vol. 20(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    2. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    3. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    4. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    5. Huang, Jian-Bai & Luo, Yu-Mei & Feng, Chao, 2019. "An overview of carbon dioxide emissions from China's ferrous metal industry: 1991-2030," Resources Policy, Elsevier, vol. 62(C), pages 541-549.
    6. Wen, Hong-xing & Chen, Zhe & Yang, Qian & Liu, Jin-yi & Nie, Pu-yan, 2022. "Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors," Energy, Elsevier, vol. 245(C).
    7. Chen, Jiandong & Wang, Ping & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2018. "Decomposition and decoupling analysis of CO2 emissions in OECD," Applied Energy, Elsevier, vol. 231(C), pages 937-950.
    8. Jie-Fang Dong & Chun Deng & Xing-Min Wang & Xiao-Lei Zhang, 2016. "Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China," Energies, MDPI, vol. 9(9), pages 1-17, August.
    9. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.
    10. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2018. "The driving forces and potential mitigation of energy-related CO2 emissions in China's metal industry," Resources Policy, Elsevier, vol. 59(C), pages 487-494.
    11. Song, Yi & Huang, Jian-Bai & Feng, Chao, 2018. "Decomposition of energy-related CO2 emissions in China's iron and steel industry: A comprehensive decomposition framework," Resources Policy, Elsevier, vol. 59(C), pages 103-116.
    12. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    13. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    14. Lizhan Cao & Hui Wang, 2022. "The Slowdown in China’s Energy Consumption Growth in the “New Normal” Stage: From Both National and Regional Perspectives," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    15. Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
    16. Decai Tang & Yan Zhang & Brandon J. Bethel, 2019. "An Analysis of Disparities and Driving Factors of Carbon Emissions in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 11(8), pages 1-13, April.
    17. Lei Liu & Ke Wang & Shanshan Wang & Ruiqin Zhang & Xiaoyan Tang, 2019. "Exploring the Driving Forces and Reduction Potential of Industrial Energy-Related CO 2 Emissions during 2001–2030: A Case Study for Henan Province, China," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    18. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    19. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    20. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:6:p:2914-:d:515801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.