IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i23p12729-d693698.html
   My bibliography  Save this article

Behavior Strategy Analysis Based on the Multi-Stakeholder Game under the Plastic Straw Ban in China

Author

Listed:
  • Tinggui Chen

    (School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
    Academy of Zhejiang Culture Industry Innovation & Development, Zhejiang Gongshang University, Hangzhou 310018, China)

  • Yuling Zhang

    (School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China)

  • Jianjun Yang

    (Department of Computer Science and Information Systems, University of North Georgia, Oakwood, GA 30566, USA)

  • Guodong Cong

    (School of Tourism and Urban-Rural Planning, Zhejiang Gongshang University, Hangzhou 310018, China)

  • Guozhang Jiang

    (Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China)

  • Gongfa Li

    (Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China)

Abstract

Since 1 January 2021, China has banned nondegradable disposable straws in the catering industry. To promote the enforcement of the ban of plastic straws and improve the relationship between economic development and environmental protection, based on the evolutionary game method, this paper constructs the game model from the supply side and the demand side, respectively. Subsequently, through the dynamic equation, stable system evolution strategy is obtained. Furthermore, simulation is conducted to test the influence of the main parameters in the model on the evolution of system strategy. The results show that (1) the change of the government strategy mainly depends on its regulation costs and revenue, while the production strategy of a company is affected by the government and consumer strategies. (2) From the perspective of enterprise supply, government subsidies can promote technological innovation and develop new plastic straw substitutes. However, government penalties have little effect on violating enterprises. In addition, from the perspective of enterprise demand, with the collaboration of enterprises and consumers, it is easier for enterprises to carry out technological innovation. (3) Consumer acceptance of the substitutes for disposable plastic straws as well as online comments have a decisive influence on the enterprises’ selections for research and development (R&D) strategies.

Suggested Citation

  • Tinggui Chen & Yuling Zhang & Jianjun Yang & Guodong Cong & Guozhang Jiang & Gongfa Li, 2021. "Behavior Strategy Analysis Based on the Multi-Stakeholder Game under the Plastic Straw Ban in China," IJERPH, MDPI, vol. 18(23), pages 1-33, December.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:23:p:12729-:d:693698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/23/12729/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/23/12729/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Timo Herberz & Claire Y. Barlow & Matthias Finkbeiner, 2020. "Sustainability Assessment of a Single-Use Plastics Ban," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    2. Zapata, Oscar, 2021. "The relationship between climate conditions and consumption of bottled water: A potential link between climate change and plastic pollution," Ecological Economics, Elsevier, vol. 187(C).
    3. Zongguo Wen & Yiling Xie & Muhan Chen & Christian Doh Dinga, 2021. "China’s plastic import ban increases prospects of environmental impact mitigation of plastic waste trade flow worldwide," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Friedman, Daniel, 1991. "Evolutionary Games in Economics," Econometrica, Econometric Society, vol. 59(3), pages 637-666, May.
    5. Hong Shen & Ying Peng & Chunxiang Guo, 2018. "Analysis of the Evolution Game of Construction and Demolition Waste Recycling Behavior Based on Prospect Theory under Environmental Regulation," IJERPH, MDPI, vol. 15(7), pages 1-17, July.
    6. repec:hhs:iuiwop:487 is not listed on IDEAS
    7. Rajendra Kumar Foolmaun & Dinkar Sharma Chamilall & Girish Munhurrun & Anand Sookun, 2021. "Was Mauritius really successful in banning plastic carry bags, after promulgation of the regulation prohibiting plastic bags usage?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11660-11676, August.
    8. Doris Knoblauch & Linda Mederake & Ulf Stein, 2018. "Developing Countries in the Lead—What Drives the Diffusion of Plastic Bag Policies?," Sustainability, MDPI, vol. 10(6), pages 1-24, June.
    9. Bharadwaj, Bishal & Baland, Jean Marie & Nepal, Mani, 2020. "What makes a ban on plastic bags effective? The case of Nepal," Environment and Development Economics, Cambridge University Press, vol. 25(2), pages 95-114, April.
    10. Jorgen W. Weibull, 1997. "Evolutionary Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262731215, December.
    11. Eleonora Foschi & Sara Zanni & Alessandra Bonoli, 2020. "Combining Eco-Design and LCA as Decision-Making Process to Prevent Plastics in Packaging Application," Sustainability, MDPI, vol. 12(22), pages 1-13, November.
    12. Jiayang Xu & Jian Cao & Yunfei Wang & Xiangrong Shi & Jiayun Zeng, 2020. "Evolutionary Game on Government Regulation and Green Supply Chain Decision-Making," Energies, MDPI, vol. 13(3), pages 1-25, February.
    13. Chen, Shih-Chih & Hung, Chung-Wen, 2016. "Elucidating the factors influencing the acceptance of green products: An extension of theory of planned behavior," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 155-163.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lili Ding & Zhimeng Guo & Yuemei Xue, 2023. "Dump or recycle? Consumer's environmental awareness and express package disposal based on an evolutionary game model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6963-6986, July.
    2. Lichi Zhang & Yanyan Jiang & Junmin Wu, 2022. "Evolutionary Game Analysis of Government and Residents’ Participation in Waste Separation Based on Cumulative Prospect Theory," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    3. Guohui Song & Yongbin Wang, 2021. "Mainstream Value Information Push Strategy on Chinese Aggregation News Platform: Evolution, Modelling and Analysis," Sustainability, MDPI, vol. 13(19), pages 1-17, October.
    4. Sandholm,W.H., 2003. "Excess payoff dynamics, potential dynamics, and stable games," Working papers 5, Wisconsin Madison - Social Systems.
    5. Hui Yu & Wei Wang & Baohua Yang & Cunfang Li, 2019. "Evolutionary Game Analysis of the Stress Effect of Cross-Regional Transfer of Resource-Exhausted Enterprises," Complexity, Hindawi, vol. 2019, pages 1-16, November.
    6. Wenke Wang & Xiaoqiong You & Kebei Liu & Yenchun Jim Wu & Daming You, 2020. "Implementation of a Multi-Agent Carbon Emission Reduction Strategy under the Chinese Dual Governance System: An Evolutionary Game Theoretical Approach," IJERPH, MDPI, vol. 17(22), pages 1-21, November.
    7. Yong He & Peng He & Feifei Xu & Chunming (Victor) Shi, 2019. "Sustainable tourism modeling: Pricing decisions and evolutionarily stable strategies for competitive tour operators," Tourism Economics, , vol. 25(5), pages 779-799, August.
    8. Griffin, Christopher & Mummah, Riley & deForest, Russ, 2021. "A finite population destroys a traveling wave in spatial replicator dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Francesco Squintani & Juuso Valimaki, 1999. "Imitation and Experimentation in a Changing Environment," Discussion Papers 1275, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    10. Vinícius Ferraz & Thomas Pitz, 2024. "Analyzing the Impact of Strategic Behavior in an Evolutionary Learning Model Using a Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 437-475, February.
    11. Daniel Friedman & Nirvikar Singh, 2004. "Vengefulness Evolves in Small Groups," Palgrave Macmillan Books, in: Steffen Huck (ed.), Advances in Understanding Strategic Behaviour, chapter 3, pages 28-54, Palgrave Macmillan.
    12. Silveira, Douglas & Vasconcelos, Silvinha, 2020. "Essays on duopoly competition with asymmetric firms: Is profit maximization always an evolutionary stable strategy?," International Journal of Production Economics, Elsevier, vol. 225(C).
    13. Friedman, Daniel & Singh, Nirvikar, 2003. "Negative Reciprocity: The Coevolution of Memes and Genes," Santa Cruz Department of Economics, Working Paper Series qt8n49r3t2, Department of Economics, UC Santa Cruz.
    14. Yingxia Xue & Fang Liu & Guangbin Wang & Jungang Shao, 2023. "Research on Strategy Evolution of Contractor and Resident in Construction Stage of Old Community Renovation Project," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    15. Zhao, Dan & Ji, Shou-feng & Wang, He-ping & Jiang, Li-wen, 2021. "How do government subsidies promote new energy vehicle diffusion in the complex network context? A three-stage evolutionary game model," Energy, Elsevier, vol. 230(C).
    16. Valdonė Šuškevičė & Jolita Kruopienė, 2020. "Improvement of Packaging Circularity through the Application of Reusable Beverage Cup Reuse Models at Outdoor Festivals and Events," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    17. John P. Conley & Myrna Wooders, 2005. "Memetics & Voting: How Nature May Make us Public Spirited," Vanderbilt University Department of Economics Working Papers 0514, Vanderbilt University Department of Economics.
    18. Jichao Geng & Meiyu Ji & Li Yang, 2022. "Role of Enterprise Alliance in Carbon Emission Reduction Mechanism: An Evolutionary Game Analysis," IJERPH, MDPI, vol. 19(18), pages 1-17, September.
    19. Farokhi, Farhad & Johansson, Karl H., 2015. "A piecewise-constant congestion taxing policy for repeated routing games," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 123-143.
    20. Jean Rabanal & Daniel Friedman, 2014. "Incomplete Information, Dynamic Stability and the Evolution of Preferences: Two Examples," Dynamic Games and Applications, Springer, vol. 4(4), pages 448-467, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:23:p:12729-:d:693698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.