IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i1p156-d195739.html
   My bibliography  Save this article

Cotreatment of MSWI Fly Ash and Granulated Lead Smelting Slag Using a Geopolymer System

Author

Listed:
  • De-Gang Liu

    (Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China)

  • Yong Ke

    (Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
    Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, Hunan, China)

  • Xiao-Bo Min

    (Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
    Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, Hunan, China)

  • Yan-Jie Liang

    (Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
    Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, Hunan, China)

  • Zhong-Bing Wang

    (Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China)

  • Yuan-Cheng Li

    (Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China)

  • Jiang-Chi Fei

    (Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China)

  • Li-Wei Yao

    (Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China)

  • Hui Xu

    (Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China)

  • Guang-Hua Jiang

    (Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China)

Abstract

Municipal solid waste incineration fly ash (MSWI FA) and granulated lead smelting slag (GLSS) are toxic industrial wastes. In the present study, granulated lead smelting slag (GLSS) was pretreated as a geopolymer precursor through the high-energy ball milling activation process, which could be used as a geopolymeric solidification/stabilization (S/S) reagent for MSWI FA. The S/S process has been estimated through the physical properties and heavy metals leachability of the S/S matrices. The results show that the compressive strength of the geopolymer matrix reaches 15.32 MPa after curing for 28 days under the best parameters, and the physical properties meet the requirement of MU10 grade fly ash brick. In addition, the toxicity characteristic leaching procedure (TCLP) test results show that arsenic and heavy metals are immobilized effectively in the geopolymer matrix, and their concentrations in the leachate are far below the US EPA TCLP limits. The hydration products of the geopolymer binder are characterized by X-ray diffraction and Fourier transform infrared methods. The results show that the geopolymer gel and Friedel’s salt are the main hydration products. The S/S mechanism of the arsenic and heavy metals in the geopolymer matrix mainly involves physical encapsulation of the geopolymer gel, geopolymer adsorption and ion exchange of Friedel’s salt.

Suggested Citation

  • De-Gang Liu & Yong Ke & Xiao-Bo Min & Yan-Jie Liang & Zhong-Bing Wang & Yuan-Cheng Li & Jiang-Chi Fei & Li-Wei Yao & Hui Xu & Guang-Hua Jiang, 2019. "Cotreatment of MSWI Fly Ash and Granulated Lead Smelting Slag Using a Geopolymer System," IJERPH, MDPI, vol. 16(1), pages 1-12, January.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:1:p:156-:d:195739
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/1/156/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/1/156/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liwei Yao & Xiaobo Min & Hui Xu & Yong Ke & Yanjie Liang & Kang Yang, 2018. "Hydrothermal Treatment of Arsenic Sulfide Residues from Arsenic-Bearing Acid Wastewater," IJERPH, MDPI, vol. 15(9), pages 1-15, August.
    2. Charles H. K. Lam & Alvin W. M. Ip & John Patrick Barford & Gordon McKay, 2010. "Use of Incineration MSW Ash: A Review," Sustainability, MDPI, vol. 2(7), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le Song & Feng Zhao & Haiyang Cui & Jingmin Wan & Hui Li, 2023. "Biofuel Ash Aging in Acidic Environment and Its Influence on Cd Immobilization," IJERPH, MDPI, vol. 20(5), pages 1-16, March.
    2. Liwei Yao & Degang Liu & Yong Ke & Yuancheng Li & Zhongbing Wang & Jiangchi Fei & Hui Xu & Xiaobo Min, 2020. "Synthesis and Hydration Characteristic of Geopolymer Based on Lead Smelting Slag," IJERPH, MDPI, vol. 17(8), pages 1-12, April.
    3. Marija Štulović & Dragana Radovanović & Željko Kamberović & Marija Korać & Zoran Anđić, 2019. "Assessment of Leaching Characteristics of Solidified Products Containing Secondary Alkaline Lead Slag," IJERPH, MDPI, vol. 16(11), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monika Czop & Beata Łaźniewska-Piekarczyk, 2019. "Evaluation of the Leachability of Contaminations of Fly Ash and Bottom Ash from the Combustion of Solid Municipal Waste before and after Stabilization Process," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    2. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    3. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    4. Dou, Xiaomin & Ren, Fei & Nguyen, Minh Quan & Ahamed, Ashiq & Yin, Ke & Chan, Wei Ping & Chang, Victor Wei-Chung, 2017. "Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 24-38.
    5. Rawashdeh, Rami Al & Xavier-Oliveira, Emanuel & Maxwell, Philip, 2016. "The potash market and its future prospects," Resources Policy, Elsevier, vol. 47(C), pages 154-163.
    6. Magdalena Bogacka & Nikolina Poranek & Beata Łaźniewska-Piekarczyk & Krzysztof Pikoń, 2020. "Removal of Pollutants from Secondary Waste from an Incineration Plant: The Review of Methods," Energies, MDPI, vol. 13(23), pages 1-17, November.
    7. S. Joseph Antony & George Okeke & D. Deniz G. Tokgoz & N. Gozde Ozerkan, 2021. "Whole-Field Stress Sensing and Multiscale Mechanics for Developing Cement-Based Composites Containing Recycled Municipal Granular Wastes," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    8. Tong, Huanhuan & Yao, Zhiyi & Lim, Jun Wei & Mao, Liwei & Zhang, Jingxing & Ge, Tian Shu & Peng, Ying Hong & Wang, Chi-Hwa & Tong, Yen Wah, 2018. "Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 163-178.
    9. Peng Xu & Qingliang Zhao & Wei Qiu & Yan Xue & Na Li, 2019. "Microstructure and Strength of Alkali-Activated Bricks Containing Municipal Solid Waste Incineration (MSWI) Fly Ash Developed as Construction Materials," Sustainability, MDPI, vol. 11(5), pages 1-12, March.
    10. Dezhi Zou & Xiaona Wang & Chuanfu Wu & Teng Li & Menglu Wang & Shu Liu & Qunhui Wang & Takayuki Shimaoka, 2020. "Dechlorination of Municipal Solid Waste Incineration Fly Ash by Leaching with Fermentation Liquid of Food Waste," Sustainability, MDPI, vol. 12(11), pages 1-11, May.
    11. Po-Wen Chen & Zhen-Shu Liu & Min-Jie Wun & Tai-Chen Kuo, 2016. "Cellular Mutagenicity and Heavy Metal Concentrations of Leachates Extracted from the Fly and Bottom Ash Derived from Municipal Solid Waste Incineration," IJERPH, MDPI, vol. 13(11), pages 1-10, November.
    12. Maria Bostenaru Dan & Magdalena Maria Bostenaru-Dan, 2021. "Greening the Brownfields of Thermal Power Plants in Rural Areas, an Example from Romania, Set in the Context of Developments in the Industrialized Country of Germany," Sustainability, MDPI, vol. 13(7), pages 1-18, March.
    13. Ramachandran, Srikkanth & Yao, Zhiyi & You, Siming & Massier, Tobias & Stimming, Ulrich & Wang, Chi-Hwa, 2017. "Life cycle assessment of a sewage sludge and woody biomass co-gasification system," Energy, Elsevier, vol. 137(C), pages 369-376.
    14. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Muyiwa Lawrence Adedara & Ridwan Taiwo & Hans-Rudolf Bork, 2023. "Municipal Solid Waste Collection and Coverage Rates in Sub-Saharan African Countries: A Comprehensive Systematic Review and Meta-Analysis," Waste, MDPI, vol. 1(2), pages 1-25, April.
    16. Hao Yu & Wei Deng Solvang, 2016. "An Improved Multi-Objective Programming with Augmented ε -Constraint Method for Hazardous Waste Location-Routing Problems," IJERPH, MDPI, vol. 13(6), pages 1-21, May.
    17. del Valle-Zermeño, Ricardo & Barreneche, Camila & Cabeza, Luisa F. & Formosa, Joan & Fernández, A. Inés & Chimenos, Josep M., 2016. "MSWI bottom ash for thermal energy storage: An innovative and sustainable approach for its reutilization," Renewable Energy, Elsevier, vol. 99(C), pages 431-436.
    18. Estefani Rondón Toro & Ana López Martínez & Amaya Lobo García de Cortázar, 2023. "Sequential Methodology for the Selection of Municipal Waste Treatment Alternatives Applied to a Case Study in Chile," Sustainability, MDPI, vol. 15(9), pages 1-18, May.
    19. Meihui Li & Na Luo & Yi Lu, 2017. "Biomass Energy Technological Paradigm (BETP): Trends in This Sector," Sustainability, MDPI, vol. 9(4), pages 1-28, April.
    20. Lasek, Janusz A. & Głód, Krzysztof & Słowik, Krzysztof, 2021. "The co-combustion of torrefied municipal solid waste and coal in bubbling fluidised bed combustor under atmospheric and elevated pressure," Renewable Energy, Elsevier, vol. 179(C), pages 828-841.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:1:p:156-:d:195739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.