IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v98y2018icp163-178.html
   My bibliography  Save this article

Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore

Author

Listed:
  • Tong, Huanhuan
  • Yao, Zhiyi
  • Lim, Jun Wei
  • Mao, Liwei
  • Zhang, Jingxing
  • Ge, Tian Shu
  • Peng, Ying Hong
  • Wang, Chi-Hwa
  • Tong, Yen Wah

Abstract

The increasing challenge in waste disposal and high dependency on imported fossil fuel has compelled Singapore to make continuous efforts in advancing waste to energy (WTE) technology, which could ensure sustainable development on one hand and energy resilience on the other hand. This paper summarizes the current WTE practices and research trends in Singapore, covering anaerobic digestion (AD), gasification, combustion-based biomass combined heat and power (CHP) production, and incineration, with the aim to define future perspectives of Singapore WTE application. Among the different aspects assessed, source-separated food waste (FW) and brown water present the biggest energy potential if AD is adopted instead of incineration. Given that the purity of source separated waste determines the extent of recovered energy, suggestions are made to increase the participating rate in source separation among Singapore residents, such as environmental education through social media and phone apps and proper facilities installation at household and community. Moreover, additional benefits can be credited to WTE system if the waste to material practice is also conducted on top of energy production.

Suggested Citation

  • Tong, Huanhuan & Yao, Zhiyi & Lim, Jun Wei & Mao, Liwei & Zhang, Jingxing & Ge, Tian Shu & Peng, Ying Hong & Wang, Chi-Hwa & Tong, Yen Wah, 2018. "Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 163-178.
  • Handle: RePEc:eee:rensus:v:98:y:2018:i:c:p:163-178
    DOI: 10.1016/j.rser.2018.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118306580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jingxin & Loh, Kai-Chee & Li, Wangliang & Lim, Jun Wei & Dai, Yanjun & Tong, Yen Wah, 2017. "Three-stage anaerobic digester for food waste," Applied Energy, Elsevier, vol. 194(C), pages 287-295.
    2. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    3. Tong, Huanhuan & Shen, Ye & Zhang, Jingxin & Wang, Chi-Hwa & Ge, Tian Shu & Tong, Yen Wah, 2018. "A comparative life cycle assessment on four waste-to-energy scenarios for food waste generated in eateries," Applied Energy, Elsevier, vol. 225(C), pages 1143-1157.
    4. Zedtwitz, P.v. & Steinfeld, A., 2003. "The solar thermal gasification of coal — energy conversion efficiency and CO2 mitigation potential," Energy, Elsevier, vol. 28(5), pages 441-456.
    5. Yao, Zhiyi & Li, Wangliang & Kan, Xiang & Dai, Yanjun & Tong, Yen Wah & Wang, Chi-Hwa, 2017. "Anaerobic digestion and gasification hybrid system for potential energy recovery from yard waste and woody biomass," Energy, Elsevier, vol. 124(C), pages 133-145.
    6. A. J. K. Pols & H. A. Romijn, 2017. "Evaluating irreversible social harms," Policy Sciences, Springer;Society of Policy Sciences, vol. 50(3), pages 495-518, September.
    7. Ramachandran, Srikkanth & Yao, Zhiyi & You, Siming & Massier, Tobias & Stimming, Ulrich & Wang, Chi-Hwa, 2017. "Life cycle assessment of a sewage sludge and woody biomass co-gasification system," Energy, Elsevier, vol. 137(C), pages 369-376.
    8. Ferreira, Sérgio & Monteiro, Eliseu & Brito, Paulo & Vilarinho, Cândida, 2017. "Biomass resources in Portugal: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1221-1235.
    9. Dou, Xiaomin & Ren, Fei & Nguyen, Minh Quan & Ahamed, Ashiq & Yin, Ke & Chan, Wei Ping & Chang, Victor Wei-Chung, 2017. "Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 24-38.
    10. Zhen, Guangyin & Lu, Xueqin & Kato, Hiroyuki & Zhao, Youcai & Li, Yu-You, 2017. "Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 559-577.
    11. ., 2017. "Through the eighties: reversing decline," Chapters, in: A History of American State and Local Economic Development, chapter 18, pages 567-605, Edward Elgar Publishing.
    12. Jain, Siddharth & Jain, Shivani & Wolf, Ingo Tim & Lee, Jonathan & Tong, Yen Wah, 2015. "A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 142-154.
    13. Ahmed, Tigabwa Y. & Ahmad, Murni M. & Yusup, Suzana & Inayat, Abrar & Khan, Zakir, 2012. "Mathematical and computational approaches for design of biomass gasification for hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2304-2315.
    14. Gao, Penghui & Li, Wangliang & Cheng, Yongpan & Tong, YenWah & Dai, Yanjun & Wang, Ruzhu, 2014. "Thermodynamic performance assessment of CCHP system driven by different composition gas," Applied Energy, Elsevier, vol. 136(C), pages 599-610.
    15. Charles H. K. Lam & Alvin W. M. Ip & John Patrick Barford & Gordon McKay, 2010. "Use of Incineration MSW Ash: A Review," Sustainability, MDPI, vol. 2(7), pages 1-26, July.
    16. Roni, Mohammad S. & Chowdhury, Sudipta & Mamun, Saleh & Marufuzzaman, Mohammad & Lein, William & Johnson, Samuel, 2017. "Biomass co-firing technology with policies, challenges, and opportunities: A global review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1089-1101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, H. & Lin, W.Y. & Dal Magro, F. & Li, T & Py, X. & Romagnoli, A., 2019. "Towards higher energy efficiency in future waste-to-energy plants with novel latent heat storage-based thermal buffer system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 324-337.
    2. Tian, Hailin & Wang, Xiaonan & Lim, Ee Yang & Lee, Jonathan T.E. & Ee, Alvin W.L. & Zhang, Jingxin & Tong, Yen Wah, 2021. "Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Zhang, Yao & Salem, Mohamed & Elmasry, Yasser & Hoang, Anh Tuan & Galal, Ahmed M. & Pham Nguyen, Dang Khoa & Wae-hayee, Makatar, 2022. "Triple-objective optimization and electrochemical/technical/environmental study of biomass gasification process for a novel high-temperature fuel cell/electrolyzer/desalination scheme," Renewable Energy, Elsevier, vol. 201(P1), pages 379-399.
    4. Woon, Kok Sin & Phuang, Zhen Xin & Lin, Zuchao & Lee, Chew Tin, 2021. "A novel food waste management framework combining optical sorting system and anaerobic digestion: A case study in Malaysia," Energy, Elsevier, vol. 232(C).
    5. Quek, Augustine & Ee, Alvin & Ng, Adam & Wah, Tong Yen, 2018. "Challenges in Environmental Sustainability of renewable energy options in Singapore," Energy Policy, Elsevier, vol. 122(C), pages 388-394.
    6. Klimenko, V.V. & Krasheninnikov, S.M. & Fedotova, E.V., 2022. "CHP performance under the warming climate: a case study for Russia," Energy, Elsevier, vol. 244(PB).
    7. Jaroslav Vrchota & Martin Pech & Ladislav Rolínek & Jiří Bednář, 2020. "Sustainability Outcomes of Green Processes in Relation to Industry 4.0 in Manufacturing: Systematic Review," Sustainability, MDPI, vol. 12(15), pages 1-47, July.
    8. Vakalis, Stergios & Moustakas, Konstantinos & Loizidou, Maria, 2019. "Energy efficiency of waste-to-energy plants with a focus on the comparison and the constraints of the 3T method and the R1 formula," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 323-329.
    9. Behnam Dastjerdi & Vladimir Strezov & Ravinder Kumar & Masud Behnia, 2022. "Environmental Impact Assessment of Solid Waste to Energy Technologies and Their Perspectives in Australia," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    10. Wu, Congcong & Yang, Haitao & He, Xiaohei & Hu, Chaoquan & Yang, Le & Li, Hongtao, 2022. "Principle, development, application design and prospect of fluidized bed heat exchange technology: Comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Dastjerdi, B. & Strezov, V. & Kumar, R. & Behnia, M., 2019. "An evaluation of the potential of waste to energy technologies for residual solid waste in New South Wales, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Li, Peixian & Ng, Jeremy & Lu, Yujie, 2022. "Accelerating the adoption of renewable energy certificate: Insights from a survey of corporate renewable procurement in Singapore," Renewable Energy, Elsevier, vol. 199(C), pages 1272-1282.
    13. Li, Xiang & Wu, Junsong & Zhu, Xinyu & Liang, Huixing, 2022. "Agricultural waste-to-energy concerning a biofuel-fed molten carbonate fuel cell toward a novel trigeneration scheme; exergoeconomic/sustainability study and multi-objective optimization," Renewable Energy, Elsevier, vol. 199(C), pages 1189-1209.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Meihui Li & Na Luo & Yi Lu, 2017. "Biomass Energy Technological Paradigm (BETP): Trends in This Sector," Sustainability, MDPI, vol. 9(4), pages 1-28, April.
    3. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    5. Zhang, Jingxin & Kan, Xiang & Shen, Ye & Loh, Kai-Chee & Wang, Chi-Hwa & Dai, Yanjun & Tong, Yen Wah, 2018. "A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment," Energy, Elsevier, vol. 152(C), pages 214-222.
    6. Tong, Huanhuan & Shen, Ye & Zhang, Jingxin & Wang, Chi-Hwa & Ge, Tian Shu & Tong, Yen Wah, 2018. "A comparative life cycle assessment on four waste-to-energy scenarios for food waste generated in eateries," Applied Energy, Elsevier, vol. 225(C), pages 1143-1157.
    7. Pecchi, Matteo & Baratieri, Marco, 2019. "Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 462-475.
    8. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    9. Lelis Gonzaga Fraga & João Silva & Senhorinha Teixeira & Delfim Soares & Manuel Ferreira & José Teixeira, 2020. "Influence of Operating Conditions on the Thermal Behavior and Kinetics of Pine Wood Particles Using Thermogravimetric Analysis," Energies, MDPI, vol. 13(11), pages 1-22, June.
    10. Ma, Chaonan & Liu, Jianyong & Ye, Min & Zou, Lianpei & Qian, Guangren & Li, Yu-You, 2018. "Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 700-709.
    11. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Zhang, Jingxin & Mao, Liwei & Nithya, Karthikeyan & Loh, Kai-Chee & Dai, Yanjun & He, Yiliang & Wah Tong, Yen, 2019. "Optimizing mixing strategy to improve the performance of an anaerobic digestion waste-to-energy system for energy recovery from food waste," Applied Energy, Elsevier, vol. 249(C), pages 28-36.
    13. Paredes, B.M. & Paredes, J.P. & García, R., 2023. "Integration of biocoal in distributed energy systems: A potential case study in the Spanish coal-mining regions," Energy, Elsevier, vol. 263(PC).
    14. Lelis Gonzaga Fraga & José Carlos F. Teixeira & Manuel Eduardo C. Ferreira, 2019. "The Potential of Renewable Energy in Timor-Leste: An Assessment for Biomass," Energies, MDPI, vol. 12(8), pages 1-12, April.
    15. Quek, Augustine & Ee, Alvin & Ng, Adam & Wah, Tong Yen, 2018. "Challenges in Environmental Sustainability of renewable energy options in Singapore," Energy Policy, Elsevier, vol. 122(C), pages 388-394.
    16. Li, Xian & Shen, Ye & Kan, Xiang & Hardiman, Timothy Kurnia & Dai, Yanjun & Wang, Chi-Hwa, 2018. "Thermodynamic assessment of a solar/autothermal hybrid gasification CCHP system with an indirectly radiative reactor," Energy, Elsevier, vol. 142(C), pages 201-214.
    17. Elalami, D. & Carrere, H. & Monlau, F. & Abdelouahdi, K. & Oukarroum, A. & Barakat, A., 2019. "Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    18. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    19. Hang Zhao & Yang Tian & Rong Wang & Rui Wang & Xiangfei Zeng & Feihua Yang & Zhaojia Wang & Mengjun Chen & Jiancheng Shu, 2021. "Seasonal Variation of the Mobility and Toxicity of Metals in Beijing’s Municipal Solid Waste Incineration Fly Ash," Sustainability, MDPI, vol. 13(12), pages 1-13, June.
    20. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:98:y:2018:i:c:p:163-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.