IDEAS home Printed from https://ideas.repec.org/a/gam/jgeogr/v4y2024i2p14-230d1363217.html
   My bibliography  Save this article

From Crops to Kilowatts: An Empirical Study on Farmland Conversion to Solar Photovoltaic Systems in Kushida River Basin, Japan

Author

Listed:
  • Zhiqiu Xie

    (Graduate School of Design, Kyushu University, Fukuoka 815-8540, Japan)

  • S M Asik Ullah

    (Faculty of Design, Kyushu University, Fukuoka 815-8540, Japan)

  • Chika Takatori

    (Faculty of Design, Kyushu University, Fukuoka 815-8540, Japan)

Abstract

In Japan, rural areas are grappling with population decline and aging, leading to a shortage of labor for farmland maintenance. This has resulted in the abandonment of farmland or its conversion for solar photovoltaic (PV) use. However, this unplanned conversion raises concerns about agricultural productivity decline, landscape degradation, biodiversity loss, water resource maintenance, and disaster prevention. This study focuses on the Kushida watershed, examining (1) accurate farmland classification using remote sensing data, (2) the geographical distribution of farmland converted to PV systems from 2016 to 2021 and concentrated along the river, especially on north-facing slopes, (3) the highest conversion rates in wheat fields, followed by legume fields, tea fields, and paddy fields, and (4) no clear correlation between farmland conversions and changes in the number of farmers, but associations with farmland geography and solar radiation levels. These findings contribute to a nuanced understanding of sustainable rural development in Japan, emphasizing the importance of considering geographical factors in the conversion of farmland to PV.

Suggested Citation

  • Zhiqiu Xie & S M Asik Ullah & Chika Takatori, 2024. "From Crops to Kilowatts: An Empirical Study on Farmland Conversion to Solar Photovoltaic Systems in Kushida River Basin, Japan," Geographies, MDPI, vol. 4(2), pages 1-15, March.
  • Handle: RePEc:gam:jgeogr:v:4:y:2024:i:2:p:14-230:d:1363217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-7086/4/2/14/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-7086/4/2/14/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Posthumus, H. & Hewett, C.J.M. & Morris, J. & Quinn, P.F., 2008. "Agricultural land use and flood risk management: Engaging with stakeholders in North Yorkshire," Agricultural Water Management, Elsevier, vol. 95(7), pages 787-798, July.
    2. Agostini, A. & Colauzzi, M. & Amaducci, S., 2021. "Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment," Applied Energy, Elsevier, vol. 281(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poonia, Surendra & Jat, N.K. & Santra, Priyabrata & Singh, A.K. & Jain, Dilip & Meena, H.M., 2022. "Techno-economic evaluation of different agri-voltaic designs for the hot arid ecosystem India," Renewable Energy, Elsevier, vol. 184(C), pages 149-163.
    2. Casares de la Torre, F.J. & Varo, Marta & López-Luque, R. & Ramírez-Faz, J. & Fernández-Ahumada, L.M., 2022. "Design and analysis of a tracking / backtracking strategy for PV plants with horizontal trackers after their conversion to agrivoltaic plants," Renewable Energy, Elsevier, vol. 187(C), pages 537-550.
    3. Erdlenbruch, Katrin & Thoyer, Sophie & Grelot, Frédéric & Kast, Robert & Enjolras, Geoffroy, 2009. "Risk-sharing policies in the context of the French Flood Prevention Action Programmes," MPRA Paper 20187, University Library of Munich, Germany.
    4. Gorjian, Shiva & Jalili Jamshidian, Farid & Gorjian, Alireza & Faridi, Hamideh & Vafaei, Mohammad & Zhang, Fangxin & Liu, Wen & Elia Campana, Pietro, 2023. "Technological advancements and research prospects of innovative concentrating agrivoltaics," Applied Energy, Elsevier, vol. 337(C).
    5. Grazia Disciglio & Laura Frabboni & Annalisa Tarantino & Antonio Stasi, 2023. "Association between Dynamic Agrivoltaic System and Cultivation: Viability, Yields and Qualitative Assessment of Medical Plants," Sustainability, MDPI, vol. 15(23), pages 1-13, November.
    6. Girolamo Di Francia & Paolo Cupo, 2023. "A Cost–Benefit Analysis for Utility-Scale Agrivoltaic Implementation in Italy," Energies, MDPI, vol. 16(7), pages 1-19, March.
    7. Junedi, M.M. & Ludin, N.A. & Hamid, N.H. & Kathleen, P.R. & Hasila, J. & Ahmad Affandi, N.A., 2022. "Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Rei Itsukushima & Kazuaki Ohtsuki & Tatsuro Sato, 2019. "Influence of Microtopography and Alluvial Lowland Characteristics on Location and Development of Residential Areas in the Kuji River Basin of Japan," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    9. Cossu, Marco & Tiloca, Maria Teresa & Cossu, Andrea & Deligios, Paola A. & Pala, Tore & Ledda, Luigi, 2023. "Increasing the agricultural sustainability of closed agrivoltaic systems with the integration of vertical farming: A case study on baby-leaf lettuce," Applied Energy, Elsevier, vol. 344(C).
    10. Qingyu Huang & Jun Wang & Mengya Li & Moli Fei & Jungang Dong, 2017. "Modeling the influence of urbanization on urban pluvial flooding: a scenario-based case study in Shanghai, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1035-1055, June.
    11. Anna Neumüller & Stefan Geier & Doris Österreicher, 2023. "Life Cycle Assessment for Photovoltaic Structures—Comparative Study of Rooftop and Free-Field PV Applications," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    12. Jerome Wei Chiang Teng & Chew Beng Soh & Shiddalingeshwar Channabasappa Devihosur & Ryan Hong Soon Tay & Steve Kardinal Jusuf, 2022. "Effects of Agrivoltaic Systems on the Surrounding Rooftop Microclimate," Sustainability, MDPI, vol. 14(12), pages 1-13, June.
    13. Lihchyi Wen & Chun-Hsu Lin & Ying-Chiao Lee, 2023. "Are Aquavoltaics Investable? A Framework for Economic and Environmental Cost-Benefit Analysis," Sustainability, MDPI, vol. 15(11), pages 1-10, June.
    14. Cuppari, Rosa I. & Higgins, Chad W. & Characklis, Gregory W., 2021. "Agrivoltaics and weather risk: A diversification strategy for landowners," Applied Energy, Elsevier, vol. 291(C).
    15. Al Mamun, Mohammad Abdullah & Garba, Ismail Ibrahim & Campbell, Shane & Dargusch, Paul & deVoil, Peter & Aziz, Ammar Abdul, 2023. "Biomass production of a sub-tropical grass under different photovoltaic installations using different grazing strategies," Agricultural Systems, Elsevier, vol. 208(C).
    16. Hewett, Caspar J.M. & Quinn, Paul F. & Wilkinson, Mark E., 2016. "The decision support matrix (DSM) approach to reducing environmental risk in farmed landscapes," Agricultural Water Management, Elsevier, vol. 172(C), pages 74-82.
    17. Giulia Sofia & Paolo Tarolli, 2017. "Hydrological Response to ~30 years of Agricultural Surface Water Management," Land, MDPI, vol. 6(1), pages 1-24, January.
    18. Aidana Chalgynbayeva & Péter Balogh & László Szőllősi & Zoltán Gabnai & Ferenc Apáti & Marianna Sipos & Attila Bai, 2024. "The Economic Potential of Agrivoltaic Systems in Apple Cultivation—A Hungarian Case Study," Sustainability, MDPI, vol. 16(6), pages 1-34, March.
    19. Jing, Rui & He, Yang & He, Jijiang & Liu, Yang & Yang, Shoubing, 2022. "Global sensitivity based prioritizing the parametric uncertainties in economic analysis when co-locating photovoltaic with agriculture and aquaculture in China," Renewable Energy, Elsevier, vol. 194(C), pages 1048-1059.
    20. Penny, Jessica & Ordens, Carlos M. & Barnett, Steve & Djordjević, Slobodan & Chen, Albert S., 2023. "Vineyards, vegetables or business-as-usual? Stakeholder-informed land use change modelling to predict the future of a groundwater-dependent prime-wine region under climate change," Agricultural Water Management, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgeogr:v:4:y:2024:i:2:p:14-230:d:1363217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.