IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i3p186-d65582.html
   My bibliography  Save this article

Electric Vehicle Charging and Discharging Coordination on Distribution Network Using Multi-Objective Particle Swarm Optimization and Fuzzy Decision Making

Author

Listed:
  • Dongqi Liu

    (Department of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Yaonan Wang

    (Department of Electrical and Information Engineering, Hunan University, Changsha 410082, China
    These authors contributed equally to this work.)

  • Yongpeng Shen

    (Department of Electrical and Information Engineering, Hunan University, Changsha 410082, China
    These authors contributed equally to this work.)

Abstract

This paper proposed a optimal strategy for coordinated operation of electric vehicles (EVs) charging and discharging with wind-thermal system. By aggregating a large number of EVs, the huge total battery capacity is sufficient to stabilize the disturbance of the transmission grid. Hence, a dynamic environmental dispatch model which coordinates a cluster of charging and discharging controllable EV units with wind farms and thermal plants is proposed. A multi-objective particle swarm optimization (MOPSO) algorithm and a fuzzy decision maker are put forward for the simultaneous optimization of grid operating cost, CO 2 emissions, wind curtailment, and EV users’ cost. Simulations are done in a 30 node system containing three traditional thermal plants, two carbon capture and storage (CCS) thermal plants, two wind farms, and six EV aggregations. Contrast of strategies under different EV charging/discharging price is also discussed. The results are presented to prove the effectiveness of the proposed strategy.

Suggested Citation

  • Dongqi Liu & Yaonan Wang & Yongpeng Shen, 2016. "Electric Vehicle Charging and Discharging Coordination on Distribution Network Using Multi-Objective Particle Swarm Optimization and Fuzzy Decision Making," Energies, MDPI, vol. 9(3), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:186-:d:65582
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/3/186/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/3/186/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Göransson, Lisa & Karlsson, Sten & Johnsson, Filip, 2010. "Integration of plug-in hybrid electric vehicles in a regional wind-thermal power system," Energy Policy, Elsevier, vol. 38(10), pages 5482-5492, October.
    2. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    3. Wang, J. & Botterud, A. & Bessa, R. & Keko, H. & Carvalho, L. & Issicaba, D. & Sumaili, J. & Miranda, V., 2011. "Wind power forecasting uncertainty and unit commitment," Applied Energy, Elsevier, vol. 88(11), pages 4014-4023.
    4. Galus, Matthias D. & Zima, Marek & Andersson, Göran, 2010. "On integration of plug-in hybrid electric vehicles into existing power system structures," Energy Policy, Elsevier, vol. 38(11), pages 6736-6745, November.
    5. Kempton, Willett & Kubo, Toru, 2000. "Electric-drive vehicles for peak power in Japan," Energy Policy, Elsevier, vol. 28(1), pages 9-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haitao Min & Weiyi Sun & Xinyong Li & Dongni Guo & Yuanbin Yu & Tao Zhu & Zhongmin Zhao, 2017. "Research on the Optimal Charging Strategy for Li-Ion Batteries Based on Multi-Objective Optimization," Energies, MDPI, vol. 10(5), pages 1-15, May.
    2. Weige Zhang & Di Zhang & Biqiang Mu & Le Yi Wang & Yan Bao & Jiuchun Jiang & Hugo Morais, 2017. "Decentralized Electric Vehicle Charging Strategies for Reduced Load Variation and Guaranteed Charge Completion in Regional Distribution Grids," Energies, MDPI, vol. 10(2), pages 1-19, January.
    3. Shyang-Chyuan Fang & Bwo-Ren Ke & Chen-Yuan Chung, 2017. "Minimization of Construction Costs for an All Battery-Swapping Electric-Bus Transportation System: Comparison with an All Plug-In System," Energies, MDPI, vol. 10(7), pages 1-20, June.
    4. Nikolaos Milas & Dimitris Mourtzis & Emmanuel Tatakis, 2020. "A Decision-Making Framework for the Smart Charging of Electric Vehicles Considering the Priorities of the Driver," Energies, MDPI, vol. 13(22), pages 1-28, November.
    5. Ruifeng Shi & Shaopeng Li & Changhao Sun & Kwang Y. Lee, 2018. "Adjustable Robust Optimization Algorithm for Residential Microgrid Multi-Dispatch Strategy with Consideration of Wind Power and Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-22, August.
    6. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun, 2021. "A novel bi-level robust game model to optimize a regionally integrated energy system with large-scale centralized renewable-energy sources in Western China," Energy, Elsevier, vol. 228(C).
    7. Chuanxue Song & Yulong Shao & Shixin Song & Cheng Chang & Fang Zhou & Silun Peng & Feng Xiao, 2017. "Energy Management of Parallel-Connected Cells in Electric Vehicles Based on Fuzzy Logic Control," Energies, MDPI, vol. 10(3), pages 1-13, March.
    8. Kou-Bin Liu & Chen-Yao Liu & Yi-Hua Liu & Yuan-Chen Chien & Bao-Sheng Wang & Yong-Seng Wong, 2016. "Analysis and Controller Design of a Universal Bidirectional DC-DC Converter," Energies, MDPI, vol. 9(7), pages 1-23, June.
    9. Yusuf A. Sha’aban & Augustine Ikpehai & Bamidele Adebisi & Khaled M. Rabie, 2017. "Bi-Directional Coordination of Plug-In Electric Vehicles with Economic Model Predictive Control," Energies, MDPI, vol. 10(10), pages 1-20, September.
    10. Ruifeng Shi & Jie Zhang & Hao Su & Zihang Liang & Kwang Y. Lee, 2020. "An Economic Penalty Scheme for Optimal Parking Lot Utilization with EV Charging Requirements," Energies, MDPI, vol. 13(22), pages 1-21, November.
    11. Su Su & Hao Li & David Wenzhong Gao, 2017. "Optimal Planning of Charging for Plug-In Electric Vehicles Focusing on Users’ Benefits," Energies, MDPI, vol. 10(7), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.
    2. Drude, Lukas & Pereira Junior, Luiz Carlos & Rüther, Ricardo, 2014. "Photovoltaics (PV) and electric vehicle-to-grid (V2G) strategies for peak demand reduction in urban regions in Brazil in a smart grid environment," Renewable Energy, Elsevier, vol. 68(C), pages 443-451.
    3. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    4. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Ehsan Sedgh Gooya, 2021. "Optimal Sizing and Energy Management of Microgrids with Vehicle-to-Grid Technology: A Critical Review and Future Trends," Energies, MDPI, vol. 14(14), pages 1-45, July.
    5. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    6. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    7. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    8. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    9. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    10. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    11. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    12. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    13. Juul, Nina, 2012. "Battery prices and capacity sensitivity: Electric drive vehicles," Energy, Elsevier, vol. 47(1), pages 403-410.
    14. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    15. repec:hrs:journl::y:2012:v:4:i:3:p:105-125 is not listed on IDEAS
    16. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    17. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    18. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    19. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    20. Alessandrini, S. & Sperati, S. & Pinson, P., 2013. "A comparison between the ECMWF and COSMO Ensemble Prediction Systems applied to short-term wind power forecasting on real data," Applied Energy, Elsevier, vol. 107(C), pages 271-280.
    21. Svajone Bekesiene & Serhii Mashchenko, 2023. "On Nash Equilibria in a Finite Game for Fuzzy Sets of Strategies," Mathematics, MDPI, vol. 11(22), pages 1-12, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:186-:d:65582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.