IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i11p949-d83007.html
   My bibliography  Save this article

Experimental Investigation on Wall Film Distribution of Dimethyl Ether/Diesel Blended Fuels Formed during Spray Wall Impingement

Author

Listed:
  • Hanzhengnan Yu

    (State Key Laboratory of Engines, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China)

  • Xingyu Liang

    (State Key Laboratory of Engines, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China)

  • Gequn Shu

    (State Key Laboratory of Engines, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China)

  • Xu Wang

    (School of Aerospace Mechanical and Manufacturing Engineering, The Royal Melbourne Institute of Technology University, 124 La Trobe Street, Melbourne, VIC 3000, Australia)

  • Yuesen Wang

    (State Key Laboratory of Engines, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China)

  • Hongsheng Zhang

    (State Key Laboratory of Engines, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China)

Abstract

Dimethyl ether (DME)/diesel blended fuels are used to improve the emissions caused by spray wall impingement during the early injection period. However, experimental results have showed that the spray wall impingement still cannot be avoided due to the engine structure and low density of the in-cylinder charge at the early injection timing. Furthermore, the wall film formed in the spray wall impingement process directly affects fuel/air mixture formation, combustion, exhaust emissions and oil quality subsequently. In this paper, the wall film distribution of DME/diesel blended fuels formed during the spray wall impingement process has been experimentally investigated. The variations of wall film distribution, wall film area and average thickness with different injection pressures, impingement distances, impingement angles and blending ratios have been discussed under both dry wall and wet wall conditions. Results showed that the wall film distribution styles were mainly determined by the spray impingement momentum. The variation of the wall film area and average thickness were affected by three factors including the impingement momentum, wall film mass and fuel properties. Correlation analysis was introduced in order to evaluate the effect of each impact factor on the variation of wall film area and average thickness.

Suggested Citation

  • Hanzhengnan Yu & Xingyu Liang & Gequn Shu & Xu Wang & Yuesen Wang & Hongsheng Zhang, 2016. "Experimental Investigation on Wall Film Distribution of Dimethyl Ether/Diesel Blended Fuels Formed during Spray Wall Impingement," Energies, MDPI, vol. 9(11), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:949-:d:83007
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/11/949/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/11/949/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Cong Ge & Min Soo Kim & Sam Ki Yoon & Nag Jung Choi, 2015. "Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend," Energies, MDPI, vol. 8(7), pages 1-14, July.
    2. Berggren, Christian & Magnusson, Thomas, 2012. "Reducing automotive emissions—The potentials of combustion engine technologies and the power of policy," Energy Policy, Elsevier, vol. 41(C), pages 636-643.
    3. Seung Hyun Yoon & Seung Chul Han & Chang Sik Lee, 2013. "Effects of High EGR Rate on Dimethyl Ether (DME) Combustion and Pollutant Emission Characteristics in a Direct Injection Diesel Engine," Energies, MDPI, vol. 6(10), pages 1-11, October.
    4. Sam Ki Yoon & Min Soo Kim & Han Joo Kim & Nag Jung Choi, 2014. "Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine," Energies, MDPI, vol. 7(12), pages 1-18, December.
    5. Zhijun Peng & Bin Liu & Weiji Wang & Lipeng Lu, 2011. "CFD Investigation into Diesel PCCI Combustion with Optimized Fuel Injection," Energies, MDPI, vol. 4(3), pages 1-15, March.
    6. Park, Su Han & Yoon, Seung Hyun, 2015. "Injection strategy for simultaneous reduction of NOx and soot emissions using two-stage injection in DME fueled engine," Applied Energy, Elsevier, vol. 143(C), pages 262-270.
    7. Kiyoshi Sakuragi & Peng Li & Maromu Otaka & Hisao Makino, 2016. "Recovery of Bio-Oil from Industrial Food Waste by Liquefied Dimethyl Ether for Biodiesel Production," Energies, MDPI, vol. 9(2), pages 1-8, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xingyu Liang & Hongsheng Zhang & Gequn Shu & Yuesen Wang & Xiuxiu Sun & Hanzhengnan Yu & Ming Ge, 2018. "Experimental Investigation on Effect of Wall Roughness and Lubricant Film on the Adhered Fuel Film of N-Butanol-Diesel Blends after Spray Impingement," Energies, MDPI, vol. 11(6), pages 1-14, June.
    2. Seemoon Yang & Changhee Lee, 2018. "Experimental Research on the Injection Rate of DME and Diesel Fuel in Common Rail Injection System by Using Bosch and Zeuch Methods," Energies, MDPI, vol. 11(2), pages 1-11, January.
    3. Evangelos G. Giakoumis, 2017. "Diesel and Spark Ignition Engines Emissions and After-Treatment Control: Research and Advancements," Energies, MDPI, vol. 10(11), pages 1-4, November.
    4. Song, Jingeun & Lee, Ziyoung & Song, Jaecheon & Park, Sungwook, 2018. "Effects of injection strategy and coolant temperature on hydrocarbon and particulate emissions from a gasoline direct injection engine with high pressure injection up to 50 MPa," Energy, Elsevier, vol. 164(C), pages 512-522.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaojie Shen & Wenzheng Cui & Xiaodong Ju & Zhongchang Liu & Shaohua Wu & Jianguo Yang, 2018. "Numerical Investigation on Effects of Assigned EGR Stratification on a Heavy Duty Diesel Engine with Two-Stage Fuel Injection," Energies, MDPI, vol. 11(3), pages 1-14, February.
    2. Giorgio Zamboni & Simone Moggia & Massimo Capobianco, 2017. "Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine," Energies, MDPI, vol. 10(1), pages 1-18, January.
    3. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    4. Yu, Hanzhengnan & Liang, Xingyu & Shu, Gequn & Wang, Yuesen & Sun, Xiuxiu & Zhang, Hongsheng, 2018. "Numerical investigation of the effect of two-stage injection strategy on combustion and emission characteristics of a diesel engine," Applied Energy, Elsevier, vol. 227(C), pages 634-642.
    5. Oleksandr Cherednichenko & Valerii Havrysh & Vyacheslav Shebanin & Antonina Kalinichenko & Grzegorz Mentel & Joanna Nakonieczny, 2020. "Local Green Power Supply Plants Based on Alcohol Regenerative Gas Turbines: Economic and Environmental Aspects," Energies, MDPI, vol. 13(9), pages 1-20, May.
    6. Md Mofijur Rahman & Mohammad Rasul & Nur Md Sayeed Hassan & Justin Hyde, 2016. "Prospects of Biodiesel Production from Macadamia Oil as an Alternative Fuel for Diesel Engines," Energies, MDPI, vol. 9(6), pages 1-15, May.
    7. Arkadiusz Jamrozik & Wojciech Tutak & Renata Gnatowska & Łukasz Nowak, 2019. "Comparative Analysis of the Combustion Stability of Diesel-Methanol and Diesel-Ethanol in a Dual Fuel Engine," Energies, MDPI, vol. 12(6), pages 1-17, March.
    8. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.
    9. Anca N. Iuga (Butnariu) & Vasile N. Popa & Luminița I. Popa, 2018. "Comparative Analysis of Automotive Products Regarding the Influence of Eco-Friendly Methods to Emissions’ Reduction," Energies, MDPI, vol. 12(1), pages 1-24, December.
    10. Barbieri, Nicolò, 2015. "Investigating the impacts of technological position and European environmental regulation on green automotive patent activity," Ecological Economics, Elsevier, vol. 117(C), pages 140-152.
    11. Jaliliantabar, Farzad & Ghobadian, Barat & Carlucci, Antonio Paolo & Najafi, Gholamhassan & Mamat, Rizalman & Ficarella, Antonio & Strafella, Luciano & Santino, Angelo & De Domenico, Stefania, 2020. "A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine," Energy, Elsevier, vol. 194(C).
    12. Asgari, Behrad & Amani, Ehsan, 2017. "A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors," Applied Energy, Elsevier, vol. 203(C), pages 696-710.
    13. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Mohammad Salman & Sung Chul Kim, 2019. "Effect of Cylinder Air Pressure and Hot Surface Temperature on Ignition Delay of Diesel Spray in a Constant Volume Combustion Chamber," Energies, MDPI, vol. 12(13), pages 1-12, July.
    15. Rosal, Ignacio del, 2022. "European dieselization: Policy insights from EU car trade," Transport Policy, Elsevier, vol. 115(C), pages 181-194.
    16. Fernández-González, Raquel & Pérez-Vas, Raisa & Puime-Guillén, Félix, 2022. "Small companies facing the mobility policy in Spain: Is it profitable to remain in the market?," Transport Policy, Elsevier, vol. 128(C), pages 113-120.
    17. Lan, Song & Li, Qingshan & Guo, Xin & Wang, Shukun & Chen, Rui, 2023. "Fuel saving potential analysis of bifunctional vehicular waste heat recovery system using thermoelectric generator and organic Rankine cycle," Energy, Elsevier, vol. 263(PB).
    18. Sovacool, Benjamin K. & Abrahamse, Wokje & Zhang, Long & Ren, Jingzheng, 2019. "Pleasure or profit? Surveying the purchasing intentions of potential electric vehicle adopters in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 69-81.
    19. Imperato, Matteo & Kaario, Ossi & Sarjovaara, Teemu & Larmi, Martti, 2016. "Split fuel injection and Miller cycle in a large-bore engine," Applied Energy, Elsevier, vol. 162(C), pages 289-297.
    20. Demeulenaere, Xavier, 2019. "The use of automotive fleets to support the diffusion of Alternative Fuel Vehicles: A Rapid Evidence Assessment of barriers and decision mechanisms," Research in Transportation Economics, Elsevier, vol. 76(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:949-:d:83007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.