IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i11p913-d82179.html
   My bibliography  Save this article

A Principal Component Analysis in Switchgrass Chemical Composition

Author

Listed:
  • Mario Aboytes-Ojeda

    (Mechanical Engineering Department, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA)

  • Krystel K. Castillo-Villar

    (Mechanical Engineering Department, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA)

  • Tun-hsiang E. Yu

    (Department of Agricultural and Resource Economics, University of Tennessee, Knoxville, TN 37996, USA)

  • Christopher N. Boyer

    (Department of Agricultural and Resource Economics, University of Tennessee, Knoxville, TN 37996, USA)

  • Burton C. English

    (Department of Agricultural and Resource Economics, University of Tennessee, Knoxville, TN 37996, USA)

  • James A. Larson

    (Department of Agricultural and Resource Economics, University of Tennessee, Knoxville, TN 37996, USA)

  • Lindsey M. Kline

    (Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996, USA)

  • Nicole Labbé

    (Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996, USA)

Abstract

In recent years, bioenergy has become a promising renewable energy source that can potentially reduce the greenhouse emissions and generate economic growth in rural areas. Gaining understanding and controlling biomass chemical composition contributes to an efficient biofuel generation. This paper presents a principal component analysis (PCA) that shows the influence and relevance of selected controllable factors over the chemical composition of switchgrass and, therefore, in the generation of biofuels. The study introduces the following factors: (1) storage days; (2) particle size; (3) wrap type; and (4) weight of the bale. Results show that all the aforementioned factors have an influence in the chemical composition. The number of days that bales have been stored was the most significant factor regarding changes in chemical components due to its effect over principal components 1 and 2 (PC1 and PC2, approximately 80% of the total variance). The storage days are followed by the particle size, the weight of the bale and the type of wrap utilized to enclose the bale. An increment in the number of days (from 75–150 days to 225 days) in storage decreases the percentage of carbohydrates by −1.03% while content of ash increases by 6.56%.

Suggested Citation

  • Mario Aboytes-Ojeda & Krystel K. Castillo-Villar & Tun-hsiang E. Yu & Christopher N. Boyer & Burton C. English & James A. Larson & Lindsey M. Kline & Nicole Labbé, 2016. "A Principal Component Analysis in Switchgrass Chemical Composition," Energies, MDPI, vol. 9(11), pages 1-12, November.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:913-:d:82179
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/11/913/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/11/913/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    2. Edward M. Rubin, 2008. "Genomics of cellulosic biofuels," Nature, Nature, vol. 454(7206), pages 841-845, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weixin Yang & Lingguang Li, 2017. "Efficiency Evaluation and Policy Analysis of Industrial Wastewater Control in China," Energies, MDPI, vol. 10(8), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    2. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    3. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    6. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    7. Rastogi, Meenal & Shrivastava, Smriti, 2017. "Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 330-340.
    8. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Costa, Valdeci José, 2019. "Models for estimating the price of forest biomass used as an energy source: A Brazilian case," Energy Policy, Elsevier, vol. 127(C), pages 382-391.
    9. Mastrocinque, Ernesto & Ramírez, F. Javier & Honrubia-Escribano, Andrés & Pham, Duc T., 2022. "Industry 4.0 enabling sustainable supply chain development in the renewable energy sector: A multi-criteria intelligent approach," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    10. Benedek, József & Sebestyén, Tihamér-Tibor & Bartók, Blanka, 2018. "Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 516-535.
    11. Su, Yu & Zhang, Yanfang & Qi, Jinxia & Xue, Tiantian & Xu, Minggao & Yang, Jiuzhong & Pan, Yang & Lin, Zhenkun, 2020. "Upgrading of furans from in situ catalytic fast pyrolysis of xylan by reduced graphene oxide supported Pt nanoparticles," Renewable Energy, Elsevier, vol. 152(C), pages 94-101.
    12. Debora Noma Okamoto & Vitor Baptista Ferrari & Suzan Pantaroto Vasconcellos & João Henrique Ghilardi Lago & Itamar Soares de Melo, 2017. "Actinomycetes as Tools for Biotransformations of Lignans," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(5), pages 1407-1409, October.
    13. Md Abu Helal & Nathaniel Anderson & Yu Wei & Matthew Thompson, 2023. "A Review of Biomass-to-Bioenergy Supply Chain Research Using Bibliometric Analysis and Visualization," Energies, MDPI, vol. 16(3), pages 1-32, January.
    14. Ghadge, Abhijeet & van der Werf, Sjoerd & Er Kara, Merve & Goswami, Mohit & Kumar, Pankaj & Bourlakis, Michael, 2020. "Modelling the impact of climate change risk on bioethanol supply chains," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    15. Gonçalves da Silva, C., 2010. "The fossil energy/climate change crunch: Can we pin our hopes on new energy technologies?," Energy, Elsevier, vol. 35(3), pages 1312-1316.
    16. Skovsgaard, Lise & Jacobsen, Henrik Klinge, 2017. "Economies of scale in biogas production and the significance of flexible regulation," Energy Policy, Elsevier, vol. 101(C), pages 77-89.
    17. Martino, Gaetano & Polinori, Paolo & Bufacchi, Marina & Rossetti, Enrica, 2020. "The biomass potential availability from olive cropping in Italy in a business perspective: Methodological approach and tentative estimates," Renewable Energy, Elsevier, vol. 156(C), pages 526-534.
    18. Avinash Bharti & Kunwar Paritosh & Venkata Ravibabu Mandla & Aakash Chawade & Vivekanand Vivekanand, 2021. "GIS Application for the Estimation of Bioenergy Potential from Agriculture Residues: An Overview," Energies, MDPI, vol. 14(4), pages 1-15, February.
    19. Arunodaya Raj Mishra & Pratibha Rani & Fausto Cavallaro & Ibrahim M. Hezam, 2023. "An IVIF-Distance Measure and Relative Closeness Coefficient-Based Model for Assessing the Sustainable Development Barriers to Biofuel Enterprises in India," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    20. Gital Durmaz, Yeşim & Bilgen, Bilge, 2020. "Multi-objective optimization of sustainable biomass supply chain network design," Applied Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:913-:d:82179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.