IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i11p863-d81304.html
   My bibliography  Save this article

Quantification of the Lifecycle Greenhouse Gas Emissions from Nuclear Power Generation Systems

Author

Listed:
  • Akhil Kadiyala

    (Center for Energy & Environmental Sustainability, Prairie View A & M University, Prairie View, TX 77446, USA)

  • Raghava Kommalapati

    (Center for Energy & Environmental Sustainability, Prairie View A & M University, Prairie View, TX 77446, USA
    Department of Civil & Environmental Engineering, Prairie View A & M University, Prairie View, TX 77446, USA)

  • Ziaul Huque

    (Center for Energy & Environmental Sustainability, Prairie View A & M University, Prairie View, TX 77446, USA
    Department of Mechanical Engineering, Prairie View A & M University, Prairie View, TX 77446, USA)

Abstract

This paper statistically quantifies the lifecycle greenhouse gas (GHG) emissions from six distinct reactor-based (boiling water reactor (BWR), pressurized water reactor (PWR), light water reactor (LWR), heavy-water-moderated reactor (HWR), gas-cooled reactor (GCR), fast breeder reactor (FBR)) nuclear power generation systems by following a two-step approach that included (a) performing a review of the lifecycle assessment (LCA) studies on the reactor-based nuclear power generation systems; and (b) statistically evaluating the lifecycle GHG emissions (expressed in grams of carbon dioxide equivalent per kilowatt hour, gCO 2 e/kWh) for each of the reactor-based nuclear power generation systems to assess the role of different types of nuclear reactors in the reduction of the lifecycle GHG emissions. Additionally, this study quantified the impacts of fuel enrichment methods (centrifuge, gaseous diffusion) on GHG emissions. The mean lifecycle GHG emissions resulting from the use of BWR (sample size, N = 15), PWR (N = 21), LWR (N = 7), HWR (N = 3), GCR (N = 1), and FBR (N = 2) in nuclear power generation systems are 14.52 gCO 2 e/kWh, 11.87 gCO 2 e/kWh, 20.5 gCO 2 e/kWh, 28.2 gCO 2 e/kWh, 8.35 gCO 2 e/kWh, and 6.26 gCO 2 e/kWh, respectively. The FBR nuclear power generation systems produced the minimum lifecycle GHGs. The centrifuge enrichment method produced lower GHG emissions than the gaseous diffusion enrichment method.

Suggested Citation

  • Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Quantification of the Lifecycle Greenhouse Gas Emissions from Nuclear Power Generation Systems," Energies, MDPI, vol. 9(11), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:863-:d:81304
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/11/863/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/11/863/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fthenakis, Vasilis M. & Kim, Hyung Chul, 2007. "Greenhouse-gas emissions from solar electric- and nuclear power: A life-cycle study," Energy Policy, Elsevier, vol. 35(4), pages 2549-2557, April.
    2. Rashad, S. M. & Hammad, F. H., 2000. "Nuclear power and the environment: comparative assessment of environmental and health impacts of electricity-generating systems," Applied Energy, Elsevier, vol. 65(1-4), pages 211-229, April.
    3. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    4. Tokimatsu, Koji & Kosugi, Takanobu & Asami, Takayoshi & Williams, Eric & Kaya, Yoichi, 2006. "Evaluation of lifecycle CO2 emissions from the Japanese electric power sector in the 21st century under various nuclear scenarios," Energy Policy, Elsevier, vol. 34(7), pages 833-852, May.
    5. Poinssot, Ch. & Bourg, S. & Ouvrier, N. & Combernoux, N. & Rostaing, C. & Vargas-Gonzalez, M. & Bruno, J., 2014. "Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles," Energy, Elsevier, vol. 69(C), pages 199-211.
    6. Nian, Victor & Chou, S.K. & Su, Bin & Bauly, John, 2014. "Life cycle analysis on carbon emissions from power generation – The nuclear energy example," Applied Energy, Elsevier, vol. 118(C), pages 68-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jérôme Serp & Christophe Poinssot & Stéphane Bourg, 2017. "Assessment of the Anticipated Environmental Footprint of Future Nuclear Energy Systems. Evidence of the Beneficial Effect of Extensive Recycling," Energies, MDPI, vol. 10(9), pages 1-19, September.
    2. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Azapagic, Adisa, 2019. "Environmental sustainability of small-scale biomass power technologies for agricultural communities in developing countries," Renewable Energy, Elsevier, vol. 141(C), pages 493-506.
    3. Pomponi, Francesco & Hart, Jim, 2021. "The greenhouse gas emissions of nuclear energy – Life cycle assessment of a European pressurised reactor," Applied Energy, Elsevier, vol. 290(C).
    4. Héctor Álvarez & Guillermo Domínguez & Almudena Ordóñez & Javier Menéndez & Rodrigo Álvarez & Jorge Loredo, 2021. "Mine Water for the Generation and Storage of Renewable Energy: A Hybrid Hydro–Wind System," IJERPH, MDPI, vol. 18(13), pages 1-18, June.
    5. Diankai Wang & Inna Gryshova & Anush Balian & Mykola Kyzym & Tetiana Salashenko & Viktoriia Khaustova & Olexandr Davidyuk, 2022. "Assessment of Power System Sustainability and Compromises between the Development Goals," Sustainability, MDPI, vol. 14(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    2. Nian, Victor & Chou, S.K. & Su, Bin & Bauly, John, 2014. "Life cycle analysis on carbon emissions from power generation – The nuclear energy example," Applied Energy, Elsevier, vol. 118(C), pages 68-82.
    3. Paul Koltun & Alfred Tsykalo & Vasily Novozhilov, 2018. "Life Cycle Assessment of the New Generation GT-MHR Nuclear Power Plant," Energies, MDPI, vol. 11(12), pages 1-13, December.
    4. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    5. Bohdanowicz, Zbigniew & Łopaciuk-Gonczaryk, Beata & Gajda, Paweł & Rajewski, Adam, 2023. "Support for nuclear power and proenvironmental attitudes: The cases of Germany and Poland," Energy Policy, Elsevier, vol. 177(C).
    6. Nian, Victor, 2015. "Change impact analysis on the life cycle carbon emissions of energy systems – The nuclear example," Applied Energy, Elsevier, vol. 143(C), pages 437-450.
    7. Kenny, R. & Law, C. & Pearce, J.M., 2010. "Towards real energy economics: Energy policy driven by life-cycle carbon emission," Energy Policy, Elsevier, vol. 38(4), pages 1969-1978, April.
    8. Joshua M. Pearce, 2012. "Limitations of Nuclear Power as a Sustainable Energy Source," Sustainability, MDPI, vol. 4(6), pages 1-15, June.
    9. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    10. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    11. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    12. Nian, Victor & Chou, S.K., 2014. "The state of nuclear power two years after Fukushima – The ASEAN perspective," Applied Energy, Elsevier, vol. 136(C), pages 838-848.
    13. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    14. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    15. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    16. Sheldon, Seth & Hadian, Saeed & Zik, Ory, 2015. "Beyond carbon: Quantifying environmental externalities as energy for hydroelectric and nuclear power," Energy, Elsevier, vol. 84(C), pages 36-44.
    17. Orfanos, Neoptolemos & Mitzelos, Dimitris & Sagani, Angeliki & Dedoussis, Vassilis, 2019. "Life-cycle environmental performance assessment of electricity generation and transmission systems in Greece," Renewable Energy, Elsevier, vol. 139(C), pages 1447-1462.
    18. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    19. Odeh, Naser A. & Cockerill, Timothy T., 2008. "Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage," Energy Policy, Elsevier, vol. 36(1), pages 367-380, January.
    20. Shuhao Chang & Qiancheng Wang & Haihua Hu & Zijian Ding & Hansen Guo, 2018. "An NNwC MPPT-Based Energy Supply Solution for Sensor Nodes in Buildings and Its Feasibility Study," Energies, MDPI, vol. 12(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:863-:d:81304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.