IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i4p3118-3141d48402.html
   My bibliography  Save this article

Hydrazine Borane and Hydrazinidoboranes as Chemical Hydrogen Storage Materials

Author

Listed:
  • Romain Moury

    (Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany)

  • Umit B. Demirci

    (IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2, Place E. Bataillon, F-34095 Montpellier, France)

Abstract

Hydrazine borane N 2 H 4 BH 3 and alkali derivatives ( i.e. , lithium, sodium and potassium hydrazinidoboranes MN 2 H 3 BH 3 with M = Li, Na and K) have been considered as potential chemical hydrogen storage materials. They belong to the family of boron- and nitrogen-based materials and the present article aims at providing a timely review while focusing on fundamentals so that their effective potential in the field could be appreciated. It stands out that, on the one hand, hydrazine borane, in aqueous solution, would be suitable for full dehydrogenation in hydrolytic conditions; the most attractive feature is the possibility to dehydrogenate, in addition to the BH 3 group, the N 2 H 4 moiety in the presence of an active and selective metal-based catalyst but for which further improvements are still necessary. However, the thermolytic dehydrogenation of hydrazine borane should be avoided because of the evolution of significant amounts of hydrazine and the formation of a shock-sensitive solid residue upon heating at >300 °C. On the other hand, the alkali hydrazinidoboranes, obtained by reaction of hydrazine borane with alkali hydrides, would be more suitable to thermolytic dehydrogenation, with improved properties in comparison to the parent borane. All of these aspects are surveyed herein and put into perspective.

Suggested Citation

  • Romain Moury & Umit B. Demirci, 2015. "Hydrazine Borane and Hydrazinidoboranes as Chemical Hydrogen Storage Materials," Energies, MDPI, vol. 8(4), pages 1-24, April.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:3118-3141:d:48402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/4/3118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/4/3118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mario Conte & Francesco Di Mario & Agostino Iacobazzi & Antonio Mattucci & Angelo Moreno & Marina Ronchetti, 2009. "Hydrogen as Future Energy Carrier: The ENEA Point of View on Technology and Application Prospects," Energies, MDPI, vol. 2(1), pages 1-30, March.
    2. Mazloomi, Kaveh & Gomes, Chandima, 2012. "Hydrogen as an energy carrier: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3024-3033.
    3. Hai-Wen Li & Yigang Yan & Shin-ichi Orimo & Andreas Züttel & Craig M. Jensen, 2011. "Recent Progress in Metal Borohydrides for Hydrogen Storage," Energies, MDPI, vol. 4(1), pages 1-30, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Qilu & Yang, Kangkang & Nie, Wendan & Li, Yaxing & Lu, Zhang-Hui, 2020. "Highly efficient hydrogen generation from hydrazine borane via a MoOx-promoted NiPd nanocatalyst," Renewable Energy, Elsevier, vol. 147(P1), pages 2024-2031.
    2. Umit Bilge Demirci, 2020. "Ammonia Borane: An Extensively Studied, Though Not Yet Implemented, Hydrogen Carrier," Energies, MDPI, vol. 13(12), pages 1-45, June.
    3. Craig M. Jensen & Etsuo Akiba & Hai-Wen Li, 2016. "Hydrides: Fundamentals and Applications," Energies, MDPI, vol. 9(4), pages 1-2, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Zhijie Duan & Luo Zhang & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong, 2021. "Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-19, November.
    3. Lee, Boreum & Park, Junhyung & Lee, Hyunjun & Byun, Manhee & Yoon, Chang Won & Lim, Hankwon, 2019. "Assessment of the economic potential: COx-free hydrogen production from renewables via ammonia decomposition for small-sized H2 refueling stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    5. Christoph Frommen & Magnus H. Sørby & Michael Heere & Terry D. Humphries & Jørn E. Olsen & Bjørn C. Hauback, 2017. "Rare Earth Borohydrides—Crystal Structures and Thermal Properties," Energies, MDPI, vol. 10(12), pages 1-24, December.
    6. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    7. Fukunaga, Akihiko & Kato, Asami & Hara, Yuki & Matsumoto, Takaya, 2023. "Dehydrogenation of methylcyclohexane using solid oxide fuel cell – A smart energy conversion," Applied Energy, Elsevier, vol. 348(C).
    8. Michail Cheliotis & Evangelos Boulougouris & Nikoletta L Trivyza & Gerasimos Theotokatos & George Livanos & George Mantalos & Athanasios Stubos & Emmanuel Stamatakis & Alexandros Venetsanos, 2021. "Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry," Energies, MDPI, vol. 14(11), pages 1-20, May.
    9. Muhammad Aziz, 2021. "Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety," Energies, MDPI, vol. 14(18), pages 1-29, September.
    10. Ye, Yang & Yue, Yi & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials," Renewable Energy, Elsevier, vol. 180(C), pages 734-743.
    11. Ye, Yang & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "The storage performance of metal hydride hydrogen storage tanks with reaction heat recovery by phase change materials," Applied Energy, Elsevier, vol. 299(C).
    12. Olexandr Yemelyanov & Anastasiya Symak & Tetyana Petrushka & Roman Lesyk & Lilia Lesyk, 2018. "Evaluation of the Adaptability of the Ukrainian Economy to Changes in Prices for Energy Carriers and to Energy Market Risks," Energies, MDPI, vol. 11(12), pages 1-34, December.
    13. Chen, Guanyi & Tao, Junyu & Liu, Caixia & Yan, Beibei & Li, Wanqing & Li, Xiangping, 2017. "Hydrogen production via acetic acid steam reforming: A critical review on catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1091-1098.
    14. Chen, Scarlett & Kumar, Anikesh & Wong, Wee Chin & Chiu, Min-Sen & Wang, Xiaonan, 2019. "Hydrogen value chain and fuel cells within hybrid renewable energy systems: Advanced operation and control strategies," Applied Energy, Elsevier, vol. 233, pages 321-337.
    15. Sean Walker & Suadd Al-Zakwani & Azadeh Maroufmashat & Michael Fowler & Ali Elkamel, 2020. "Multi-Criteria Examination of Power-to-Gas Pathways under Stochastic Preferences," Energies, MDPI, vol. 13(12), pages 1-18, June.
    16. Jianfeng Mao & Duncan H. Gregory, 2015. "Recent Advances in the Use of Sodium Borohydride as a Solid State Hydrogen Store," Energies, MDPI, vol. 8(1), pages 1-24, January.
    17. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Multi-criteria optimization for the design and operation of distributed energy systems considering sustainability dimensions," Energy, Elsevier, vol. 214(C).
    18. Santos, D.M.F. & Šljukić, B. & Sequeira, C.A.C. & Macciò, D. & Saccone, A. & Figueiredo, J.L., 2013. "Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: Proof-of-concept using platinum--dysprosium alloys," Energy, Elsevier, vol. 50(C), pages 486-492.
    19. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:3118-3141:d:48402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.