IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i4p2788-2802d48069.html
   My bibliography  Save this article

The Effects of Envelope Design Alternatives on the Energy Consumption of Residential Houses in Indonesia

Author

Listed:
  • Andre Feliks Setiawan

    (Department of Civil Engineering, National Cheng Kung University, Taiwan/1, University Road, Tainan 701, Taiwan)

  • Tzu-Ling Huang

    (Department of Architecture, National Cheng Kung University, Taiwan/1, University Road, Tainan 701, Taiwan)

  • Chun-Ta Tzeng

    (Department of Architecture, National Cheng Kung University, Taiwan/1, University Road, Tainan 701, Taiwan)

  • Chi-Ming Lai

    (Department of Civil Engineering, National Cheng Kung University, Taiwan/1, University Road, Tainan 701, Taiwan)

Abstract

As an emerging country and one of the most populous countries in the world, Indonesia requires a sufficient energy supply to ensure the nation’s continued development. In response to this increasing energy demand, various studies have proposed energy-saving measures; building envelope design is considered to be a typical energy-saving technique. A significant goal in achieving greener buildings is learning how to reduce a building’s energy consumption by applying an efficient energy-saving design. This study used the eQUEST software to investigate how different types of roof construction, glazing and sun-shading techniques affect the energy consumption of residential structures in Indonesia in common scenarios. The results indicate that window shading has the most significant impact on a building’s overall energy consumption, followed by the use of an appropriate glazing, whereas the roof type produced smaller energy efficiency benefits.

Suggested Citation

  • Andre Feliks Setiawan & Tzu-Ling Huang & Chun-Ta Tzeng & Chi-Ming Lai, 2015. "The Effects of Envelope Design Alternatives on the Energy Consumption of Residential Houses in Indonesia," Energies, MDPI, vol. 8(4), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:2788-2802:d:48069
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/4/2788/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/4/2788/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chi-Ming Lai & Yao-Hong Wang, 2011. "Energy-Saving Potential of Building Envelope Designs in Residential Houses in Taiwan," Energies, MDPI, vol. 4(11), pages 1-16, November.
    2. Mujiyanto, Sugeng & Tiess, Günter, 2013. "Secure energy supply in 2025: Indonesia's need for an energy policy strategy," Energy Policy, Elsevier, vol. 61(C), pages 31-41.
    3. Shahbaz, Muhammad & Hye, Qazi Muhammad Adnan & Tiwari, Aviral Kumar & Leitão, Nuno Carlos, 2013. "Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 109-121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shilei Lu & Ran Wang & Shaoqun Zheng, 2017. "Passive Optimization Design Based on Particle Swarm Optimization in Rural Buildings of the Hot Summer and Warm Winter Zone of China," Sustainability, MDPI, vol. 9(12), pages 1-30, December.
    2. Teng Shao & Wuxing Zheng & Hong Jin, 2020. "Analysis of the Indoor Thermal Environment and Passive Energy-Saving Optimization Design of Rural Dwellings in Zhalantun, Inner Mongolia, China," Sustainability, MDPI, vol. 12(3), pages 1-34, February.
    3. Zhenmin Yuan & Jianliang Zhou & Yaning Qiao & Yadi Zhang & Dandan Liu & Hui Zhu, 2020. "BIM-VE-Based Optimization of Green Building Envelope from the Perspective of both Energy Saving and Life Cycle Cost," Sustainability, MDPI, vol. 12(19), pages 1-16, September.
    4. Kočí, Jan & Kočí, Václav & Maděra, Jiří & Černý, Robert, 2019. "Effect of applied weather data sets in simulation of building energy demands: Comparison of design years with recent weather data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 22-32.
    5. Kamel, Ehsan & Memari, Ali M., 2018. "Automated Building Energy Modeling and Assessment Tool (ABEMAT)," Energy, Elsevier, vol. 147(C), pages 15-24.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bloch, Harry & Rafiq, Shuddhasattwa & Salim, Ruhul, 2015. "Economic growth with coal, oil and renewable energy consumption in China: Prospects for fuel substitution," Economic Modelling, Elsevier, vol. 44(C), pages 104-115.
    2. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    3. Obsatar Sinaga & Mohd Haizam Mohd Saudi & Djoko Roespinoedji & Mohd Shahril Ahmad Razimi, 2019. "The Dynamic Relationship between Natural Gas and Economic Growth: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 388-394.
    4. Liu, Yaping & Sadiq, Farah & Ali, Wajahat & Kumail, Tafazal, 2022. "Does tourism development, energy consumption, trade openness and economic growth matters for ecological footprint: Testing the Environmental Kuznets Curve and pollution haven hypothesis for Pakistan," Energy, Elsevier, vol. 245(C).
    5. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    6. Dong, Kangyin & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "Does natural gas consumption mitigate CO2 emissions: Testing the environmental Kuznets curve hypothesis for 14 Asia-Pacific countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 419-429.
    7. Udi Joshua & Festus V. Bekun & Samuel A. Sarkodie, 2020. "New Insight into the Causal Linkage between Economic Expansion, FDI, Coal consumption, Pollutant emissions and Urbanization in South Africa," Working Papers 20/011, European Xtramile Centre of African Studies (EXCAS).
    8. Adekoya, Oluwasegun B. & Olabode, Joshua K. & Rafi, Syed K., 2021. "Renewable energy consumption, carbon emissions and human development: Empirical comparison of the trajectories of world regions," Renewable Energy, Elsevier, vol. 179(C), pages 1836-1848.
    9. Fei Yang & Chunchen Wang, 2023. "Clean energy, emission trading policy, and CO2 emissions: Evidence from China," Energy & Environment, , vol. 34(5), pages 1657-1673, August.
    10. Sohail Abbas & Shazia Kousar & Amber Pervaiz, 2021. "Effects of energy consumption and ecological footprint on CO2 emissions: an empirical evidence from Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13364-13381, September.
    11. Xu, Deyi & Sheraz, Muhammad & Hassan, Arshad & Sinha, Avik & Ullah, Saif, 2022. "Financial development, renewable energy and CO2 emission in G7 countries: New evidence from non-linear and asymmetric analysis," Energy Economics, Elsevier, vol. 109(C).
    12. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    13. Ajayi, Patricia & Ogunrinola, Adedeji, 2020. "Growth, Trade Openness and Environmental Degradation in Nigeria," MPRA Paper 100713, University Library of Munich, Germany.
    14. Solomon P. Nathaniel & Festus V. Bekun, 2020. "Electricity Consumption, Urbanization and Economic Growth in Nigeria: New Insights from Combined Cointegration amidst Structural Breaks," Research Africa Network Working Papers 20/013, Research Africa Network (RAN).
    15. Xie, Yutang & Cao, Yujia & Li, Xiaotao, 2023. "The importance of trade policy uncertainty to energy consumption in a changing world," Finance Research Letters, Elsevier, vol. 52(C).
    16. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).
    17. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Experimental Validation of Water Flow Glazing: Transient Response in Real Test Rooms," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    18. Shahbaz, Muhammad & Nasreen, Samia & Abbas, Faisal & Anis, Omri, 2015. "Does foreign direct investment impede environmental quality in high-, middle-, and low-income countries?," Energy Economics, Elsevier, vol. 51(C), pages 275-287.
    19. Acquah-Andoh, Elijah & Putra, Herdi A. & Ifelebuegu, Augustine O. & Owusu, Andrews, 2019. "Coalbed methane development in Indonesia: Design and economic analysis of upstream petroleum fiscal policy," Energy Policy, Elsevier, vol. 131(C), pages 155-167.
    20. Karaaslan, Abdulkerim & Çamkaya, Serhat, 2022. "The relationship between CO2 emissions, economic growth, health expenditure, and renewable and non-renewable energy consumption: Empirical evidence from Turkey," Renewable Energy, Elsevier, vol. 190(C), pages 457-466.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:2788-2802:d:48069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.