IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i11p4390-4398d21166.html
   My bibliography  Save this article

Regulatory Promotion of Waste Wood Reused as an Energy Source and the Environmental Concerns about Ash Residue in the Industrial Sector of Taiwan

Author

Listed:
  • Wen-Tien Tsai

    (Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912, Taiwan)

Abstract

The objective of this paper was to provide a preliminary analysis of the utilization of energy derived from waste wood in Taiwan, a highly industrialized country with a high dependence (over 99%) on imported energy. The discussion focuses on the status of waste wood generation and its management over the past decade. Findings show that the quantities of biomass waste collected for reuse purposes in the industrial sectors of Taiwan has exhibited an increasing trend, from about 4000 tons in 2001 to over 52,000 tons in 2010. Although waste wood can be reused as a fuel and raw material for a variety of applications based on regulatory promotion, the most commonly used end use is to directly utilize it as an auxiliary fuel in industrial utilities (e.g., boilers, heaters and furnaces) for the purpose of co-firing with coal/fuel oil. The most progressive measure for promoting biomass-to-power is to introduce the feed-in tariff (FIT) mechanism according to the Renewable Energy Development Act passed in June 2009. The financial support for biomass power generation has been increasing over the years from 0.070 US$/kWh in 2010 to 0.094 US$/kWh in 2012. On the other hand, the environmental regulations in Taiwan regarding the hazard identification of wood-combusted ash (especially in filter fly-ash) and its options for disposal and utilization are further discussed in the paper, suggesting that waste wood impregnated with chromated copper arsenate (CCA) and other copper-based preservatives should be excluded from the wood-to-energy system. Finally, some recommendations for promoting wood-to-energy in the near future of Taiwan are addressed.

Suggested Citation

  • Wen-Tien Tsai, 2012. "Regulatory Promotion of Waste Wood Reused as an Energy Source and the Environmental Concerns about Ash Residue in the Industrial Sector of Taiwan," Energies, MDPI, vol. 5(11), pages 1-9, November.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:11:p:4390-4398:d:21166
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/11/4390/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/11/4390/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsai, W.T. & Chou, Y.H., 2006. "An overview of renewable energy utilization from municipal solid waste (MSW) incineration in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 491-502, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arbulú, Italo & Lozano, Javier & Rey-Maquieira, Javier, 2017. "The challenges of tourism to waste-to-energy public-private partnerships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 916-921.
    2. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Alao, M.A., 2017. "Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 149-162.
    3. Tsai, Wen-Tien, 2014. "Feed-in tariff promotion and innovative measures for renewable electricity: Taiwan case analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1126-1132.
    4. Taylor, Josh A. & Dhople, Sairaj V. & Callaway, Duncan S., 2016. "Power systems without fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1322-1336.
    5. Tsai, Wen-Tien & Lan, Haw-Farn & Lin, De-Tsai, 2008. "An analysis of bioethanol utilized as renewable energy in the transportation sector in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1364-1382, June.
    6. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.
    7. Chen, Falin & Lu, Shyi-Min & Chang, Yi-Lin, 2007. "Renewable energy in Taiwan: Its developing status and strategy," Energy, Elsevier, vol. 32(9), pages 1634-1646.
    8. Chang, C.T. & Costa, M. & La Villetta, M. & Macaluso, A. & Piazzullo, D. & Vanoli, L., 2019. "Thermo-economic analyses of a Taiwanese combined CHP system fuelled with syngas from rice husk gasification," Energy, Elsevier, vol. 167(C), pages 766-780.
    9. Solhee Kim & Rylie E. O. Pelton & Timothy M. Smith & Jimin Lee & Jeongbae Jeon & Kyo Suh, 2019. "Environmental Implications of the National Power Roadmap with Policy Directives for Battery Electric Vehicles (BEVs)," Sustainability, MDPI, vol. 11(23), pages 1-22, November.
    10. Tsai, Wen-Tien & Kuo, Kuan-Chi, 2010. "An analysis of power generation from municipal solid waste (MSW) incineration plants in Taiwan," Energy, Elsevier, vol. 35(12), pages 4824-4830.
    11. Tsai, Wen-Tien & Hsien, Kuo-Jung, 2007. "An analysis of cogeneration system utilized as sustainable energy in the industrial sector in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2104-2120, December.
    12. Raj, N. Thilak & Iniyan, S. & Goic, Ranko, 2011. "A review of renewable energy based cogeneration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3640-3648.
    13. Konstantinos Petridis & Prasanta Kumar Dey, 2018. "Measuring incineration plants’ performance using combined data envelopment analysis, goal programming and mixed integer linear programming," Annals of Operations Research, Springer, vol. 267(1), pages 467-491, August.
    14. Zhang, Xiaoling & Wu, Yuzhe & Shen, Liyin, 2012. "Application of low waste technologies for design and construction: A case study in Hong Kong," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2973-2979.
    15. Huang, Yun-Hsun & Wu, Jung-Hua, 2009. "A transition toward a market expansion phase: Policies for promoting wind power in Taiwan," Energy, Elsevier, vol. 34(4), pages 437-447.
    16. Wang, Yuan & Lai, Nan & Zuo, Jian & Chen, Guanyi & Du, Huibin, 2016. "Characteristics and trends of research on waste-to-energy incineration: A bibliometric analysis, 1999–2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 95-104.
    17. Wang, Dan & Tang, Yu-Ting & He, Jun & Yang, Fei & Robinson, Darren, 2021. "Generalized models to predict the lower heating value (LHV) of municipal solid waste (MSW)," Energy, Elsevier, vol. 216(C).
    18. Wen-Tien Tsai, 2012. "An Analysis of the Use of Biosludge as an Energy Source and Its Environmental Benefits in Taiwan," Energies, MDPI, vol. 5(8), pages 1-10, August.
    19. Yaliwal, V.S. & Banapurmath, N.R. & Hosmath, R.S. & Khandal, S.V. & Budzianowski, Wojciech M., 2016. "Utilization of hydrogen in low calorific value producer gas derived from municipal solid waste and biodiesel for diesel engine power generation application," Renewable Energy, Elsevier, vol. 99(C), pages 1253-1261.
    20. Di Maria, Francesco & Sisani, Federico & Contini, Stefano, 2018. "Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste?," Applied Energy, Elsevier, vol. 230(C), pages 1557-1572.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:11:p:4390-4398:d:21166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.