IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v4y2011i11p1937-1949d14757.html
   My bibliography  Save this article

Performance Improvement of a Portable Electric Generator Using an Optimized Bio-Fuel Ratio in a Single Cylinder Two-Stroke Engine

Author

Listed:
  • Norhisam Misron

    (Department of Electrical & Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia)

  • Suhairi Rizuan

    (Department of Electrical & Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia)

  • Aravind Vaithilingam

    (Department of Electrical & Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia)

  • Nashiren Farzilah Mailah

    (Department of Electrical & Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia)

  • Hanamoto Tsuyoshi

    (Department of Biological Functions and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kyushu 804-8550, Japan)

  • Yamada Hiroaki

    (Department of Biological Functions and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kyushu 804-8550, Japan)

  • Shirai Yoshihito

    (Department of Biological Functions and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kyushu 804-8550, Japan)

Abstract

The performance of an electrical generator using bio-fuel and gasoline blends of different composition as fuel in a single cylinder engine is presented. The effect of an optimized blend ratio of bio-fuel with gasoline on engine performance improvement and thereby on the electrical generator output is studied. Bio-fuels such as ethanol, butanol and methanol are blended with gasoline in different proportions and evaluated for performance. The effects of different bio-fuel/gasoline blending ratios are compared experimentally with that of the gasoline alone using the output power developed by the electric generator as the evaluation parameter. With a composition of 10% ethanol–gasoline, the engine performance is increased up to 6% and with a blending ratio of 20% butanol–gasoline the performance is increased up to 8% compared to the use of 100% gasoline. The investigations are performed on a portable generator used in palm tree harvesting applications.

Suggested Citation

  • Norhisam Misron & Suhairi Rizuan & Aravind Vaithilingam & Nashiren Farzilah Mailah & Hanamoto Tsuyoshi & Yamada Hiroaki & Shirai Yoshihito, 2011. "Performance Improvement of a Portable Electric Generator Using an Optimized Bio-Fuel Ratio in a Single Cylinder Two-Stroke Engine," Energies, MDPI, vol. 4(11), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:4:y:2011:i:11:p:1937-1949:d:14757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/4/11/1937/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/4/11/1937/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sumathi, S. & Chai, S.P. & Mohamed, A.R., 2008. "Utilization of oil palm as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2404-2421, December.
    2. Koç, Mustafa & Sekmen, Yakup & Topgül, Tolga & Yücesu, Hüseyin Serdar, 2009. "The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine," Renewable Energy, Elsevier, vol. 34(10), pages 2101-2106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aswin Uvaraj Ganesan & Sathyanarayanan Nandhagopal & Arvind Shiyam Venkat & Sanjeevikumar Padmanaban & John K. Pedersen & Lenin Natesan Chokkalingam & Zbigniew Leonowicz, 2019. "Performance Analysis of Single-Phase Electrical Machine for Military Applications," Energies, MDPI, vol. 12(12), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.
    2. Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal & Safieddin Ardebili, Seyed Mohammad & Mamat, Rizalman, 2015. "Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology," Energy, Elsevier, vol. 90(P2), pages 1815-1829.
    3. Iyabo Adeola Olanrele & Adedoyin I. Lawal & Ezekiel Oseni & Ahmed Oluwatobi Adekunle & Bukola, B. Lawal-Adedoyin & Crystal O. Elleke & Racheal Ojeka-John & Henry Nweke-Love, 2020. "Accessing the Impacts of Contemporary Development in Biofuel on Agriculture, Energy and Domestic Economy: Evidence from Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 469-478.
    4. Ishola, Mofoluwake M. & Brandberg, Tomas & Sanni, Sikiru A. & Taherzadeh, Mohammad J., 2013. "Biofuels in Nigeria: A critical and strategic evaluation," Renewable Energy, Elsevier, vol. 55(C), pages 554-560.
    5. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2010. "Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate," Renewable Energy, Elsevier, vol. 35(1), pages 14-22.
    6. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    7. Lee Xin Ni & Fazlin Ali & Zanurul Huzaima Zainudin, 2016. "Factors Influencing the Implementation of Malaysia Sustainable Palm Oil (MSPO) Among Oil Palm Smallholders in Malaysia," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 6(12), pages 272-284, December.
    8. Abdullah, A.Z. & Salamatinia, B. & Mootabadi, H. & Bhatia, S., 2009. "Current status and policies on biodiesel industry in Malaysia as the world's leading producer of palm oil," Energy Policy, Elsevier, vol. 37(12), pages 5440-5448, December.
    9. Kuok Ho Daniel Tang & Hamad M. S. Al Qahtani, 2020. "Sustainability of oil palm plantations in Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 4999-5023, August.
    10. Lam, Hon Loong & Ng, Wendy P.Q. & Ng, Rex T.L. & Ng, Ern Huay & Aziz, Mustafa K. Abdul & Ng, Denny K.S., 2013. "Green strategy for sustainable waste-to-energy supply chain," Energy, Elsevier, vol. 57(C), pages 4-16.
    11. Syaifuddin Syaifuddin, 2017. "Does Organizational Support Affect Employees Commitment to Implement Biogas Programs?," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 352-355.
    12. Costa, M. & Di Blasio, G. & Prati, M.V. & Costagliola, M.A. & Cirillo, D. & La Villetta, M. & Caputo, C. & Martoriello, G., 2020. "Multi-objective optimization of a syngas powered reciprocating engine equipping a combined heat and power unit," Applied Energy, Elsevier, vol. 275(C).
    13. Anderson Breno Souza & Alvaro Antonio Villa Ochoa & José Ângelo Peixoto da Costa & Gustavo de Novaes Pires Leite & Héber Claudius Nunes Silva & Andrezza Carolina Carneiro Tómas & David Campos Barbosa , 2023. "A Review of Tropical Organic Materials for Biodiesel as a Substitute Energy Source in Internal Combustion Engines: A Viable Solution?," Energies, MDPI, vol. 16(9), pages 1-25, April.
    14. Craven, Catherine, 2011. "The Honduran palm oil industry: Employing lessons from Malaysia in the search for economically and environmentally sustainable energy solutions," Energy Policy, Elsevier, vol. 39(11), pages 6943-6950.
    15. Shuit, S.H. & Tan, K.T. & Lee, K.T. & Kamaruddin, A.H., 2009. "Oil palm biomass as a sustainable energy source: A Malaysian case study," Energy, Elsevier, vol. 34(9), pages 1225-1235.
    16. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    17. García, Carlos A. & Manzini, Fabio & Islas, Jorge, 2010. "Air emissions scenarios from ethanol as a gasoline oxygenate in Mexico City Metropolitan Area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3032-3040, December.
    18. Arpa, O. & Yumrutas, R. & Alma, M.H., 2010. "Effects of turpentine and gasoline-like fuel obtained from waste lubrication oil on engine performance and exhaust emission," Energy, Elsevier, vol. 35(9), pages 3603-3613.
    19. Paolo Iodice & Massimo Cardone, 2021. "Ethanol/Gasoline Blends as Alternative Fuel in Last Generation Spark-Ignition Engines: A Review on CO and HC Engine Out Emissions," Energies, MDPI, vol. 14(13), pages 1-18, July.
    20. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:4:y:2011:i:11:p:1937-1949:d:14757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.