IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1423-d1357623.html
   My bibliography  Save this article

Optimizing Peer-to-Peer Energy Transactions: Determining the Allowable Maximum Trading Power for Participants

Author

Listed:
  • Pikkanate Angaphiwatchawal

    (Department of Electrical Engineering, Chulalongkorn University, Bangkok 10330, Thailand)

  • Surachai Chaitusaney

    (Department of Electrical Engineering, Chulalongkorn University, Bangkok 10330, Thailand)

Abstract

This paper presents a comprehensive study on the impacts of peer-to-peer (P2P) energy markets on distribution systems, specifically focusing on voltage, power loss, and congestion. While P2P energy markets create opportunities for direct trading between prosumers and consumers, ensuring compliance with distribution system constraints remains a challenge. This paper proposes an iterative method and graphical interpretation in order to assess complex interactions, addressing the persistent issue of network constraints. Additionally, this paper proposes a method to determine distribution locational marginal prices (DLMPs) for real-time traditional energy markets. This ensures effective coordination among sellers, buyers, and the distribution system operator. The proposed method aims to prevent negative impacts on distribution system operation via the determination of the allowable maximum trading power (MTP), ensuring empirical validity and practical implementation via operating conditions and forecast errors, thus distinguishing it from prior studies. This paper also establishes a model for P2P energy market interactions, utilizing linear estimations for efficient DLMP updates. The contributions of this paper enhance the understanding and operation of P2P energy markets, and is supported by simulation results validating the proposed method.

Suggested Citation

  • Pikkanate Angaphiwatchawal & Surachai Chaitusaney, 2024. "Optimizing Peer-to-Peer Energy Transactions: Determining the Allowable Maximum Trading Power for Participants," Energies, MDPI, vol. 17(6), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1423-:d:1357623
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2020. "Investigating the impact of P2P trading on power losses in grid-connected networks with prosumers," Applied Energy, Elsevier, vol. 263(C).
    2. Samende, Cephas & Cao, Jun & Fan, Zhong, 2022. "Multi-agent deep deterministic policy gradient algorithm for peer-to-peer energy trading considering distribution network constraints," Applied Energy, Elsevier, vol. 317(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheyuan Sun & Sara Tavakoli & Kaveh Khalilpour & Alexey Voinov & Jonathan Paul Marshall, 2024. "Barriers to Peer-to-Peer Energy Trading Networks: A Multi-Dimensional PESTLE Analysis," Sustainability, MDPI, vol. 16(4), pages 1-23, February.
    2. Henni, Sarah & Staudt, Philipp & Weinhardt, Christof, 2021. "A sharing economy for residential communities with PV-coupled battery storage: Benefits, pricing and participant matching," Applied Energy, Elsevier, vol. 301(C).
    3. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    4. Chen, Liudong & Liu, Nian & Li, Chenchen & Zhang, Silu & Yan, Xiaohe, 2021. "Peer-to-peer energy sharing with dynamic network structures," Applied Energy, Elsevier, vol. 291(C).
    5. Andreolli, Francesca & D'Alpaos, Chiara & Kort, Peter, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," FEEM Working Papers 330498, Fondazione Eni Enrico Mattei (FEEM).
    6. Xia, Yuanxing & Xu, Qingshan & Tao, Siyu & Du, Pengwei & Ding, Yixing & Fang, Jicheng, 2022. "Preserving operation privacy of peer-to-peer energy transaction based on Enhanced Benders Decomposition considering uncertainty of renewable energy generations," Energy, Elsevier, vol. 250(C).
    7. Filipe Bandeiras & Álvaro Gomes & Mário Gomes & Paulo Coelho, 2023. "Exploring Energy Trading Markets in Smart Grid and Microgrid Systems and Their Implications for Sustainability in Smart Cities," Energies, MDPI, vol. 16(2), pages 1-41, January.
    8. Cephas Samende & Zhong Fan & Jun Cao & Renzo Fabián & Gregory N. Baltas & Pedro Rodriguez, 2023. "Battery and Hydrogen Energy Storage Control in a Smart Energy Network with Flexible Energy Demand Using Deep Reinforcement Learning," Energies, MDPI, vol. 16(19), pages 1-20, September.
    9. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    10. Kristie Kaminski Küster & Daniel Gebbran & Alexandre Rasi Aoki & Germano Lambert-Torres & Daniel Navarro-Gevers & Patrício Rodolfo Impinisi & Cleverson Luiz da Silva Pinto, 2023. "Adoption of Local Peer-to-Peer Energy Markets: Technical and Economical Perspectives for Utilities," Energies, MDPI, vol. 16(5), pages 1-24, March.
    11. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.
    12. Chang, Weiguang & Dong, Wei & Yang, Qiang, 2023. "Day-ahead bidding strategy of cloud energy storage serving multiple heterogeneous microgrids in the electricity market," Applied Energy, Elsevier, vol. 336(C).
    13. Janko, Samantha & Johnson, Nathan G., 2020. "Reputation-based competitive pricing negotiation and power trading for grid-connected microgrid networks," Applied Energy, Elsevier, vol. 277(C).
    14. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    15. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    16. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2021. "Cooperative negawatt P2P energy trading for low-voltage distribution networks," Applied Energy, Elsevier, vol. 299(C).
    17. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    18. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    19. Lei, Yu-Tian & Ma, Chao-Qun & Mirza, Nawazish & Ren, Yi-Shuai & Narayan, Seema Wati & Chen, Xun-Qi, 2022. "A renewable energy microgrids trading management platform based on permissioned blockchain," Energy Economics, Elsevier, vol. 115(C).
    20. Illia Diahovchenko & Lubov Petrichenko, 2022. "Comparative Analysis of Power Distribution Systems with Individual Prosumers Owing Photovoltaic Installations and Solar Energy Communities in Terms of Profitability and Hosting Capacity," Energies, MDPI, vol. 15(23), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1423-:d:1357623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.