IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2296-d1082226.html
   My bibliography  Save this article

Research on Optimization Strategy of Battery Swapping for Electric Taxis

Author

Listed:
  • Hao Qiang

    (School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
    Jiangsu Province Engineering Research Center of High-Level Energy and Power Equipment, Changzhou University, Changzhou 213164, China)

  • Yanchun Hu

    (School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China)

  • Wenqi Tang

    (School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China)

  • Xiaohua Zhang

    (School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China)

Abstract

Nowadays, sustainability-related issues have attracted growing attention due to fossil fuel depletion and environmental concerns. Considering many cities have gradually replaced taxis with electric vehicles (EVs), to reduce greenhouse gas emissions and traditional energy consumption, this paper studies the optimization strategy of battery swapping for electric taxis (ETs), and it is not only to ease congestion in the battery swapping station (BSS) but also for electric taxis to address their range anxiety and maximize their benefits. Firstly, based on the road network, the Dijkstra algorithm is adopted to provide the optimal path for ETs to BSSs with the minimum energy consumption. Then, this paper proposes the optimization objective function with minimum cost, which contains the battery service cost based on the battery’s state of charge, waiting cost caused by waiting for swapping battery in BSSs and the carbon emission reduction benefit generated during ETs driving to BSSs, and uses a mixed-integer linear programming (MILP) algorithm to solve this function. Finally, taking the Leisure Park of Laoshan City in Beijing as an example, the numerical simulation is carried out and the proposed battery swapping strategy is efficient to alleviate the congestion of BSSs and maximize the total benefit of ETs, and the cost based on the proposed strategy is 14.21% less than that of disorderly swapping.

Suggested Citation

  • Hao Qiang & Yanchun Hu & Wenqi Tang & Xiaohua Zhang, 2023. "Research on Optimization Strategy of Battery Swapping for Electric Taxis," Energies, MDPI, vol. 16(5), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2296-:d:1082226
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2296/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2296/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang, Yanni & Zhang, Xingping, 2018. "Battery swap pricing and charging strategy for electric taxis in China," Energy, Elsevier, vol. 147(C), pages 561-577.
    2. Tan, Yang & Fukuda, Hiroatsu & Li, Zhang & Wang, Shuai & Gao, Weijun & Liu, Zhonghui, 2022. "Does the public support the construction of battery swapping station for battery electric vehicles? - Data from Hangzhou, China," Energy Policy, Elsevier, vol. 163(C).
    3. H. Paul Williams, 2009. "Modelling In Logic For Integer Programming," International Series in Operations Research & Management Science, in: Logic and Integer Programming, chapter 0, pages 71-103, Springer.
    4. Clairand, Jean-Michel & González-Rodríguez, Mario & Kumar, Rajesh & Vyas, Shashank & Escrivá-Escrivá, Guillermo, 2022. "Optimal siting and sizing of electric taxi charging stations considering transportation and power system requirements," Energy, Elsevier, vol. 256(C).
    5. H. Paul Williams, 2009. "Logic and Integer Programming," International Series in Operations Research and Management Science, Springer, number 978-0-387-92280-5, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florin Mariasiu & Ioan Aurel Chereches & Horia Raboca, 2023. "Statistical Analysis of the Interdependence between the Technical and Functional Parameters of Electric Vehicles in the European Market," Energies, MDPI, vol. 16(7), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Hebden & Fabian Winkler, 2021. "Impulse-Based Computation of Policy Counterfactuals," Finance and Economics Discussion Series 2021-042, Board of Governors of the Federal Reserve System (U.S.).
    2. Moon, Kyungduk & Lee, Kangbok & Chopra, Sunil & Kwon, Steve, 2022. "Bilevel integer programming on a Boolean network for discovering critical genetic alterations in cancer development and therapy," European Journal of Operational Research, Elsevier, vol. 300(2), pages 743-754.
    3. O’Neill, Sam & Wrigley, Paul & Bagdasar, Ovidiu, 2022. "A mixed-integer linear programming formulation for the modular layout of three-dimensional connected systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 739-754.
    4. Yang, Jie & Liu, Wei & Ma, Kai & Yue, Zhiyuan & Zhu, Anhu & Guo, Shiliang, 2023. "An optimal battery allocation model for battery swapping station of electric vehicles," Energy, Elsevier, vol. 272(C).
    5. Jaroslav Pluskal & Radovan Šomplák & Dušan Hrabec & Vlastimír Nevrlý & Lars Magnus Hvattum, 2022. "Optimal location and operation of waste-to-energy plants when future waste composition is uncertain," Operational Research, Springer, vol. 22(5), pages 5765-5790, November.
    6. Hua, Weiqi & Chen, Ying & Qadrdan, Meysam & Jiang, Jing & Sun, Hongjian & Wu, Jianzhong, 2022. "Applications of blockchain and artificial intelligence technologies for enabling prosumers in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Hu, Xu & Yang, Zhaojun & Sun, Jun & Zhang, Yali, 2023. "Optimal pricing strategy for electric vehicle battery swapping: Pay-per-swap or subscription?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    8. Minan Tang & Chenchen Zhang & Yaqi Zhang & Yaguang Yan & Wenjuan Wang & Bo An, 2024. "A Dual-Layer MPC of Coordinated Control of Battery Load Demand and Grid-Side Supply Matching at Electric Vehicle Swapping Stations," Energies, MDPI, vol. 17(4), pages 1-26, February.
    9. Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).
    10. Guohao Li & Tao Wang, 2022. "Long-Term Leases vs. One-Off Purchases: Game Analysis on Battery Swapping Mode Considering Cascade Utilization and Power Structure," Sustainability, MDPI, vol. 14(24), pages 1-28, December.
    11. J. N. Hooker & H. P. Williams, 2012. "Combining Equity and Utilitarianism in a Mathematical Programming Model," Management Science, INFORMS, vol. 58(9), pages 1682-1693, September.
    12. Nadia V. Panossian & Haitam Laarabi & Keith Moffat & Heather Chang & Bryan Palmintier & Andrew Meintz & Timothy E. Lipman & Rashid A. Waraich, 2023. "Architecture for Co-Simulation of Transportation and Distribution Systems with Electric Vehicle Charging at Scale in the San Francisco Bay Area," Energies, MDPI, vol. 16(5), pages 1-18, February.
    13. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Dorrell, David G. & Li, Xiaohui & Zhan, Weipeng, 2023. "Operation optimization approaches of electric vehicle battery swapping and charging station: A literature review," Energy, Elsevier, vol. 263(PE).
    14. Minas, James P. & Hearne, John W. & Martell, David L., 2014. "A spatial optimisation model for multi-period landscape level fuel management to mitigate wildfire impacts," European Journal of Operational Research, Elsevier, vol. 232(2), pages 412-422.
    15. Mahoor, Mohsen & Hosseini, Zohreh S. & Khodaei, Amin, 2019. "Least-cost operation of a battery swapping station with random customer requests," Energy, Elsevier, vol. 172(C), pages 913-921.
    16. Amiri, Saeed Salimi & Jadid, Shahram & Saboori, Hedayat, 2018. "Multi-objective optimum charging management of electric vehicles through battery swapping stations," Energy, Elsevier, vol. 165(PB), pages 549-562.
    17. Li, Mingyang & Tang, Jinjun, 2023. "Simulation-based optimization considering energy consumption for assisted station locations to enhance flex-route transit," Energy, Elsevier, vol. 277(C).
    18. Wang, Jiawei & Guo, Qinglai & Sun, Hongbin & Chen, Min, 2023. "Collaborative optimization of logistics and electricity for the mobile charging service system," Applied Energy, Elsevier, vol. 336(C).
    19. Dušan Hrabec & Jakub Kůdela & Radovan Šomplák & Vlastimír Nevrlý & Pavel Popela, 2020. "Circular economy implementation in waste management network design problem: a case study," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(4), pages 1441-1458, December.
    20. Zhan, Weipeng & Wang, Zhenpo & Zhang, Lei & Liu, Peng & Cui, Dingsong & Dorrell, David G., 2022. "A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations," Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2296-:d:1082226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.