IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2212-d1079818.html
   My bibliography  Save this article

An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2

Author

Listed:
  • Radoslaw Slezak

    (Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213 Str., 90-924 Lodz, Poland)

  • Hilal Unyay

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213 Str., 90-924 Lodz, Poland)

  • Szymon Szufa

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213 Str., 90-924 Lodz, Poland)

  • Stanislaw Ledakowicz

    (Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213 Str., 90-924 Lodz, Poland)

Abstract

The depletion of fossil fuels has led to a search for new methods of fuel and chemical production from biomass. One of the methods of converting biomass into valuable products is the process of pyrolysis. This process has been extensively researched in recent years due to the rising prices of energy and chemicals. This work contains basic information on the pyrolysis process concerning the individual components present in the biomass and the types of biomass used in the pyrolysis process. Particular attention was paid to sewage sludge, the management of which is a big challenge. The influence of the most important process parameters (temperature, heating rate, residence time of the solid and vapor, reaction atmosphere) on the pyrolysis products (char, oil, and gas) was presented. The paper presents an overview of the reactors used in the pyrolysis process, from slow to fast pyrolysis, together with their efficiency, advantages, and disadvantages. The analysis of the application of other thermochemical processes for producing the energy used in the process of pyrolysis and in the drying of the biomass was carried out. Two industrial-scale installations for the pyrolysis of sewage sludge were presented.

Suggested Citation

  • Radoslaw Slezak & Hilal Unyay & Szymon Szufa & Stanislaw Ledakowicz, 2023. "An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2," Energies, MDPI, vol. 16(5), pages 1-25, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2212-:d:1079818
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2212/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2212/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao, Ruirui & Yang, Wei, 2013. "Influence of temperature on organic structure of biomass pyrolysis products," Renewable Energy, Elsevier, vol. 50(C), pages 136-141.
    2. Tyagi, Vinay Kumar & Lo, Shang-Lien, 2013. "Sludge: A waste or renewable source for energy and resources recovery?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 708-728.
    3. Piotr Piersa & Hilal Unyay & Szymon Szufa & Wiktoria Lewandowska & Remigiusz Modrzewski & Radosław Ślężak & Stanisław Ledakowicz, 2022. "An Extensive Review and Comparison of Modern Biomass Torrefaction Reactors vs. Biomass Pyrolysis—Part 1," Energies, MDPI, vol. 15(6), pages 1-34, March.
    4. Williams, Paul T. & Horne, Patrick A., 1994. "The role of metal salts in the pyrolysis of biomass," Renewable Energy, Elsevier, vol. 4(1), pages 1-13.
    5. Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
    6. Magdalena Matusiak & Radosław Ślęzak & Stanisław Ledakowicz, 2020. "Thermogravimetric Kinetics of Selected Energy Crops Pyrolysis," Energies, MDPI, vol. 13(15), pages 1-15, August.
    7. Andrzej Rostocki & Hilal Unyay & Katarzyna Ławińska & Andrzej Obraniak, 2022. "Granulates Based on Bio and Industrial Waste and Biochar in a Sustainable Economy," Energies, MDPI, vol. 16(1), pages 1-18, December.
    8. Isahak, Wan Nor Roslam Wan & Hisham, Mohamed W.M. & Yarmo, Mohd Ambar & Yun Hin, Taufiq-yap, 2012. "A review on bio-oil production from biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5910-5923.
    9. Heena Panchasara & Nanjappa Ashwath, 2021. "Effects of Pyrolysis Bio-Oils on Fuel Atomisation—A Review," Energies, MDPI, vol. 14(4), pages 1-22, February.
    10. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    11. Lehto, Jani & Oasmaa, Anja & Solantausta, Yrjö & Kytö, Matti & Chiaramonti, David, 2014. "Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass," Applied Energy, Elsevier, vol. 116(C), pages 178-190.
    12. Werle, Sebastian & Wilk, Ryszard K., 2010. "A review of methods for the thermal utilization of sewage sludge: The Polish perspective," Renewable Energy, Elsevier, vol. 35(9), pages 1914-1919.
    13. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    14. Stanisław Ledakowicz & Olexa Piddubniak, 2022. "The Non-Stationary Heat Transport inside a Shafted Screw Conveyor Filled with Homogeneous Biomass Heated Electrically," Energies, MDPI, vol. 15(17), pages 1-16, August.
    15. Danai Frantzi & Anastasia Zabaniotou, 2021. "Waste-Based Intermediate Bioenergy Carriers: Syngas Production via Coupling Slow Pyrolysis with Gasification under a Circular Economy Model," Energies, MDPI, vol. 14(21), pages 1-37, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lukáš Krátký & Stanislaw Ledakowicz & Radoslaw Slezak & Vojtěch Bělohlav & Peter Peciar & Máté Petrik & Tomáš Jirout & Marián Peciar & Zoltán Siménfalvi & Radek Šulc & Zoltán Szamosi, 2024. "Emerging Sustainability in Carbon Capture and Use Strategies for V4 Countries via Biochemical Pathways: A Review," Sustainability, MDPI, vol. 16(3), pages 1-22, January.
    2. Stanisław Ledakowicz & Olexa Piddubniak, 2023. "Temperature Distribution in a Finite-Length Cylindrical Channel Filled with Biomass Transported by Electrically Heated Auger," Energies, MDPI, vol. 16(17), pages 1-23, August.
    3. Inna Tryhuba & Anatoliy Tryhuba & Taras Hutsol & Agata Cieszewska & Oleh Andrushkiv & Szymon Glowacki & Andrzej Bryś & Sergii Slobodian & Weronika Tulej & Mariusz Sojak, 2024. "Prediction of Biogas Production Volumes from Household Organic Waste Based on Machine Learning," Energies, MDPI, vol. 17(7), pages 1-20, April.
    4. Esin Apaydın Varol & Ülker Mutlu, 2023. "TGA-FTIR Analysis of Biomass Samples Based on the Thermal Decomposition Behavior of Hemicellulose, Cellulose, and Lignin," Energies, MDPI, vol. 16(9), pages 1-19, April.
    5. Hilal Unyay & Piotr Piersa & Magdalena Zabochnicka & Zdzisława Romanowska-Duda & Piotr Kuryło & Ksawery Kuligowski & Paweł Kazimierski & Taras Hutsol & Arkadiusz Dyjakon & Edyta Wrzesińska-Jędrusiak &, 2023. "Torrefaction of Willow in Batch Reactor and Co-Firing of Torrefied Willow with Coal," Energies, MDPI, vol. 16(24), pages 1-23, December.
    6. Kossińska, Nina & Krzyżyńska, Renata & Ghazal, Heba & Jouhara, Hussam, 2023. "Hydrothermal carbonisation of sewage sludge and resulting biofuels as a sustainable energy source," Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hansen, Samuel & Mirkouei, Amin & Diaz, Luis A., 2020. "A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    2. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    4. Waheed A. Rasaq & Mateusz Golonka & Miklas Scholz & Andrzej Białowiec, 2021. "Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review," Energies, MDPI, vol. 14(17), pages 1-20, August.
    5. Kim, Heeyoon & Yu, Seunghan & Ra, Howon & Yoon, Sungmin & Ryu, Changkook, 2023. "Prediction of pyrolysis kinetics for torrefied biomass based on raw biomass properties and torrefaction severity," Energy, Elsevier, vol. 278(C).
    6. Leng, Lijian & Li, Tanghao & Zhan, Hao & Rizwan, Muhammad & Zhang, Weijin & Peng, Haoyi & Yang, Zequn & Li, Hailong, 2023. "Machine learning-aided prediction of nitrogen heterocycles in bio-oil from the pyrolysis of biomass," Energy, Elsevier, vol. 278(PB).
    7. Hu, Xun & Gholizadeh, Mortaza, 2020. "Progress of the applications of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Md Sumon Reza & Zhanar Baktybaevna Iskakova & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Marzhan M. Kubenova & Muhammad Saifullah Abu Bakar & Abul K. Azad & Hrido, 2023. "Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-39, July.
    9. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Hidalgo, D. & Martín-Marroquín, J.M. & Corona, F., 2019. "A multi-waste management concept as a basis towards a circular economy model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 481-489.
    11. Mari Rowena C. Tanquilut & Homer C. Genuino & Erwin Wilbers & Rossana Marie C. Amongo & Delfin C. Suministrado & Kevin F. Yaptenco & Marilyn M. Elauria & Jessie C. Elauria & Hero J. Heeres, 2020. "Biorefining of Pigeon Pea: Residue Conversion by Pyrolysis," Energies, MDPI, vol. 13(11), pages 1-19, June.
    12. Seljak, T. & Buffi, M. & Valera-Medina, A. & Chong, C.T. & Chiaramonti, D. & Katrašnik, T., 2020. "Bioliquids and their use in power generation – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    13. Elena Goldan & Valentin Nedeff & Narcis Barsan & Mihaela Culea & Claudia Tomozei & Mirela Panainte-Lehadus & Emilian Mosnegutu, 2022. "Evaluation of the Use of Sewage Sludge Biochar as a Soil Amendment—A Review," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    14. Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    15. Ren, Jingzheng & Liang, Hanwei & Dong, Liang & Gao, Zhiqiu & He, Chang & Pan, Ming & Sun, Lu, 2017. "Sustainable development of sewage sludge-to-energy in China: Barriers identification and technologies prioritization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 384-396.
    16. Huang, Qian & Xu, Jiuping, 2020. "Bi-level multi-objective programming approach for carbon emission quota allocation towards co-combustion of coal and sewage sludge," Energy, Elsevier, vol. 211(C).
    17. Stanisław Ledakowicz & Olexa Piddubniak, 2023. "Temperature Distribution in a Finite-Length Cylindrical Channel Filled with Biomass Transported by Electrically Heated Auger," Energies, MDPI, vol. 16(17), pages 1-23, August.
    18. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    19. García, R. & Gil, M.V. & Fanjul, A. & González, A. & Majada, J. & Rubiera, F. & Pevida, C., 2021. "Residual pyrolysis biochar as additive to enhance wood pellets quality," Renewable Energy, Elsevier, vol. 180(C), pages 850-859.
    20. Lam, Su Shiung & Wan Mahari, Wan Adibah & Ok, Yong Sik & Peng, Wanxi & Chong, Cheng Tung & Ma, Nyuk Ling & Chase, Howard A. & Liew, Zhenling & Yusup, Suzana & Kwon, Eilhann E. & Tsang, Daniel C.W., 2019. "Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).

    More about this item

    Keywords

    pyrolysis; biomass; reactor; char; oil; gas;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2212-:d:1079818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.