IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7719-d1285729.html
   My bibliography  Save this article

A Fuzzy Logic Concept for Predicting the Seasonal Thermal Performance of Building Envelopes Based on Structural and Geographical Parameters

Author

Listed:
  • Jan Kočí

    (Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7/2077, 166 29 Prague, Czech Republic)

  • Jiří Maděra

    (Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7/2077, 166 29 Prague, Czech Republic)

  • Yulia Khmurovska

    (Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7/2077, 166 29 Prague, Czech Republic)

  • Petr Štemberk

    (Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7/2077, 166 29 Prague, Czech Republic)

  • Robert Černý

    (Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7/2077, 166 29 Prague, Czech Republic)

Abstract

The current practice of building thermal retrofitting is based on the outcomes of energy audits that make use of standardized tabulated information mapped on a structure or structural elements under inherently very specific conditions. Therefore, it provides very limited outcomes for further analysis, especially when decision making procedures are required to particularize the retrofitting strategy. This paper introduces a novel fuzzy logic approach for predicting the thermal performance of building walls that can be used in practice to partially substitute time-consuming and costly energy audits or complex computational analyses. The objective of this concept is to forecast the annual heating energy demands of buildings and to identify the potential energy savings that could be achieved by applying thermal retrofitting measures based on limited resources and information obtained from maps, blueprints, and/or a simple site inspection. For this purpose, a sample knowledge base was created using a validated computational model of the heat and moisture transport in the multilayered wall assemblies. Then, the fuzzy logic model was introduced to predict the thermal performance of selected walls. Our comparison of the fuzzy model outputs with simulated data proved the potential of using the proposed concept as an efficient and straightforward tool for predicting the seasonal thermal performance of building envelopes and to partially replace the current practice, which requires the utilization of building energy audits.

Suggested Citation

  • Jan Kočí & Jiří Maděra & Yulia Khmurovska & Petr Štemberk & Robert Černý, 2023. "A Fuzzy Logic Concept for Predicting the Seasonal Thermal Performance of Building Envelopes Based on Structural and Geographical Parameters," Energies, MDPI, vol. 16(23), pages 1-12, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7719-:d:1285729
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7719/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7719/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Perez, Yael Valerie & Capeluto, Isaac Guedi, 2009. "Climatic considerations in school building design in the hot-humid climate for reducing energy consumption," Applied Energy, Elsevier, vol. 86(3), pages 340-348, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Capeluto, I. Guedi & Ochoa, Carlos E., 2014. "Simulation-based method to determine climatic energy strategies of an adaptable building retrofit façade system," Energy, Elsevier, vol. 76(C), pages 375-384.
    2. Yu, Jinghua & Yang, Changzhi & Tian, Liwei & Liao, Dan, 2009. "Evaluation on energy and thermal performance for residential envelopes in hot summer and cold winter zone of China," Applied Energy, Elsevier, vol. 86(10), pages 1970-1985, October.
    3. Svetlana Pushkar & Abraham Yezioro, 2022. "External Shading Devices: Should the Energy Standard Be Supplemented with a Production Stage?," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    4. Anxiao Zhang & Regina Bokel & Andy Van den Dobbelsteen & Yanchen Sun & Qiong Huang & Qi Zhang, 2017. "The Effect of Geometry Parameters on Energy and Thermal Performance of School Buildings in Cold Climates of China," Sustainability, MDPI, vol. 9(10), pages 1-19, September.
    5. Nematchoua, Modeste Kameni & Tchinda, René & Orosa, José A., 2014. "Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: A questionnaire-based statistical study," Applied Energy, Elsevier, vol. 114(C), pages 687-699.
    6. Gaitani, N. & Lehmann, C. & Santamouris, M. & Mihalakakou, G. & Patargias, P., 2010. "Using principal component and cluster analysis in the heating evaluation of the school building sector," Applied Energy, Elsevier, vol. 87(6), pages 2079-2086, June.
    7. Chung, Mo & Park, Hwa-Choon, 2012. "Building energy demand patterns for department stores in Korea," Applied Energy, Elsevier, vol. 90(1), pages 241-249.
    8. Nassipkul Dyussembekova & Nazym Temirgaliyeva & Dias Umyshev & Madina Shavdinova & Reiner Schuett & Damesh Bektalieva, 2022. "Assessment of Energy Efficiency Measures’ Impact on Energy Performance in the Educational Building of Kazakh-German University in Almaty," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    9. Freire, Roberto Zanetti & Mazuroski, Walter & Abadie, Marc Olivier & Mendes, Nathan, 2011. "Capacitive effect on the heat transfer through building glazing systems," Applied Energy, Elsevier, vol. 88(12), pages 4310-4319.
    10. Kočí, Jan & Černý, Robert, 2022. "A design of a semi-virtual calibration experiment for a sensitivity enhancement of general-purpose heat flow meters applied in residential buildings," Energy, Elsevier, vol. 261(PA).
    11. Wan, Kevin K.W. & Li, Danny H.W. & Pan, Wenyan & Lam, Joseph C., 2012. "Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications," Applied Energy, Elsevier, vol. 97(C), pages 274-282.
    12. Mangkuto, Rizki A. & Rohmah, Mardliyahtur & Asri, Anindya Dian, 2016. "Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics," Applied Energy, Elsevier, vol. 164(C), pages 211-219.
    13. Dervishi, Sokol & Baçi, Nerina, 2023. "Early design evaluation of low-rise school building morphology on energy performance: Climatic contexts of Southeast Europe," Energy, Elsevier, vol. 269(C).
    14. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    15. Ochoa, Carlos E. & Aries, Myriam B.C. & van Loenen, Evert J. & Hensen, Jan L.M., 2012. "Considerations on design optimization criteria for windows providing low energy consumption and high visual comfort," Applied Energy, Elsevier, vol. 95(C), pages 238-245.
    16. Piotr Lis & Anna Lis, 2021. "The Required Amount of Ventilation Air for the Classroom and the Possibility of Air Infiltration through the Windows," Energies, MDPI, vol. 14(22), pages 1-22, November.
    17. Abdelaziz Farouk Mohamed & Mohammed M. Gomaa & Amira Ahmed Amir & Ayman Ragab, 2023. "Energy, Thermal, and Economic Benefits of Aerogel Glazing Systems for Educational Buildings in Hot Arid Climates," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    18. Aktacir, Mehmet Azmi & Büyükalaca, Orhan & YIlmaz, Tuncay, 2010. "A case study for influence of building thermal insulation on cooling load and air-conditioning system in the hot and humid regions," Applied Energy, Elsevier, vol. 87(2), pages 599-607, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7719-:d:1285729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.