IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v114y2014icp687-699.html
   My bibliography  Save this article

Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: A questionnaire-based statistical study

Author

Listed:
  • Nematchoua, Modeste Kameni
  • Tchinda, René
  • Orosa, José A.

Abstract

The present article reports the results of a questionnaire-based statistical study of subjective answers by inhabitants regarding thermal comfort and energy consumption in their area of residence. This study was conducted in five towns of four Cameroon regions with different climatic conditions (center, littoral, west, and east). The questionnaires were distributed in more than 500 modern and traditional buildings during two seasons: a long rainy season (mid-March to mid-November) and a short dry season (mid-November to mid-March). The physical measurements of air temperature, relative humidity, and wind speed were performed simultaneously. The results showed that the traditional buildings were more comfortable during the two seasons. The data revealed that 51% of the occupants in traditional buildings voted for “no change” versus 37.6% in modern buildings. On the other hand, 73.4% of the occupants of modern buildings desired greater humidity versus 28% of traditional buildings. Overall, the inhabitants of modern habitats desired “more air,” while those of traditional habitats preferred no change in their environment.

Suggested Citation

  • Nematchoua, Modeste Kameni & Tchinda, René & Orosa, José A., 2014. "Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: A questionnaire-based statistical study," Applied Energy, Elsevier, vol. 114(C), pages 687-699.
  • Handle: RePEc:eee:appene:v:114:y:2014:i:c:p:687-699
    DOI: 10.1016/j.apenergy.2013.10.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913008568
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.10.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Djongyang, Noël & Tchinda, René & Njomo, Donatien, 2010. "Thermal comfort: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2626-2640, December.
    2. Ogbonna, A.C. & Harris, D.J., 2008. "Thermal comfort in sub-Saharan Africa: Field study report in Jos-Nigeria," Applied Energy, Elsevier, vol. 85(1), pages 1-11, January.
    3. Perez, Yael Valerie & Capeluto, Isaac Guedi, 2009. "Climatic considerations in school building design in the hot-humid climate for reducing energy consumption," Applied Energy, Elsevier, vol. 86(3), pages 340-348, March.
    4. Indraganti, Madhavi, 2010. "Thermal comfort in naturally ventilated apartments in summer: Findings from a field study in Hyderabad, India," Applied Energy, Elsevier, vol. 87(3), pages 866-883, March.
    5. Buratti, C. & Ricciardi, P. & Vergoni, M., 2013. "HVAC systems testing and check: A simplified model to predict thermal comfort conditions in moderate environments," Applied Energy, Elsevier, vol. 104(C), pages 117-127.
    6. Ochoa, Carlos E. & Aries, Myriam B.C. & van Loenen, Evert J. & Hensen, Jan L.M., 2012. "Considerations on design optimization criteria for windows providing low energy consumption and high visual comfort," Applied Energy, Elsevier, vol. 95(C), pages 238-245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albert Malama & Lilias Makashini & Henry Abanda & Austine Ng'ombe & Priscilla Mudenda, 2015. "A Comparative Analysis of Energy Usage and Energy Efficiency Behavior in Low- and High-Income Households: The Case of Kitwe, Zambia," Resources, MDPI, vol. 4(4), pages 1-32, November.
    2. Michael M. Santos & Ana Vaz Ferreira & João C. G. Lanzinha, 2022. "Passive Solar Systems for the Promotion of Thermal Comfort in African Countries: A Review," Energies, MDPI, vol. 15(23), pages 1-37, December.
    3. Łukasz J. Orman & Natalia Krawczyk & Norbert Radek & Stanislav Honus & Jacek Pietraszek & Luiza Dębska & Agata Dudek & Artur Kalinowski, 2023. "Comparative Analysis of Indoor Environmental Quality and Self-Reported Productivity in Intelligent and Traditional Buildings," Energies, MDPI, vol. 16(18), pages 1-21, September.
    4. Zeyad Amin Al-Absi & Mohd Hafizal Mohd Isa & Mazran Ismail, 2020. "Phase Change Materials (PCMs) and Their Optimum Position in Building Walls," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
    5. Łukasz J. Orman & Grzegorz Majewski & Norbert Radek & Jacek Pietraszek, 2022. "Analysis of Thermal Comfort in Intelligent and Traditional Buildings," Energies, MDPI, vol. 15(18), pages 1-25, September.
    6. Webb, Amanda L., 2017. "Energy retrofits in historic and traditional buildings: A review of problems and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 748-759.
    7. Łukasz Jan Orman & Natalia Siwczuk & Norbert Radek & Stanislav Honus & Jerzy Zbigniew Piotrowski & Luiza Dębska, 2024. "Comparative Analysis of Subjective Indoor Environment Assessment in Actual and Simulated Conditions," Energies, MDPI, vol. 17(3), pages 1-16, January.
    8. Lee-Yong Sung & Jonghoon Ahn, 2020. "Comparative Analyses of Energy Efficiency between on-Demand and Predictive Controls for Buildings’ Indoor Thermal Environment," Energies, MDPI, vol. 13(5), pages 1-15, March.
    9. Ahn, Jonghoon & Cho, Soolyeon, 2017. "Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments," Applied Energy, Elsevier, vol. 204(C), pages 117-130.
    10. Wu, Xianguo & Feng, Zongbao & Chen, Hongyu & Qin, Yawei & Zheng, Shiyi & Wang, Lei & Liu, Yang & Skibniewski, Miroslaw J., 2022. "Intelligent optimization framework of near zero energy consumption building performance based on a hybrid machine learning algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Nematchoua, Modeste Kameni & Raminosoa, Chrysostôme R.R. & Mamiharijaona, Ramaroson & René, Tchinda & Orosa, José A. & Elvis, Watis & Meukam, Pierre, 2015. "Study of the economical and optimum thermal insulation thickness for buildings in a wet and hot tropical climate: Case of Cameroon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1192-1202.
    12. Mostavi, Ehsan & Asadi, Somayeh & Boussaa, Djamel, 2017. "Development of a new methodology to optimize building life cycle cost, environmental impacts, and occupant satisfaction," Energy, Elsevier, vol. 121(C), pages 606-615.
    13. Nematchoua, Modeste Kameni & Orosa, José A. & Reiter, Sigrid, 2019. "Energy consumption assessment due to the mobility of inhabitants and multiannual prospective on the horizon 2030–2050 in one Belgium city," Energy, Elsevier, vol. 171(C), pages 523-534.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    2. Francesco Asdrubali & Cinzia Buratti & Franco Cotana & Giorgio Baldinelli & Michele Goretti & Elisa Moretti & Catia Baldassarri & Elisa Belloni & Francesco Bianchi & Antonella Rotili & Marco Vergoni &, 2013. "Evaluation of Green Buildings’ Overall Performance through in Situ Monitoring and Simulations," Energies, MDPI, vol. 6(12), pages 1-23, December.
    3. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    4. Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
    5. Capeluto, I. Guedi & Ochoa, Carlos E., 2014. "Simulation-based method to determine climatic energy strategies of an adaptable building retrofit façade system," Energy, Elsevier, vol. 76(C), pages 375-384.
    6. Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).
    7. Yun, Geun Young & Steemers, Koen, 2011. "Behavioural, physical and socio-economic factors in household cooling energy consumption," Applied Energy, Elsevier, vol. 88(6), pages 2191-2200, June.
    8. Zhang, Sheng & Lin, Zhang, 2020. "Standard effective temperature based adaptive-rational thermal comfort model," Applied Energy, Elsevier, vol. 264(C).
    9. Zhang, Sheng & Cheng, Yong & Fang, Zhaosong & Huan, Chao & Lin, Zhang, 2017. "Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving," Applied Energy, Elsevier, vol. 204(C), pages 420-431.
    10. Nematchoua, Modeste Kameni & Tchinda, René & Ricciardi, Paola & Djongyang, Noël, 2014. "A field study on thermal comfort in naturally-ventilated buildings located in the equatorial climatic region of Cameroon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 381-393.
    11. Mangkuto, Rizki A. & Rohmah, Mardliyahtur & Asri, Anindya Dian, 2016. "Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics," Applied Energy, Elsevier, vol. 164(C), pages 211-219.
    12. Buratti, C. & Ricciardi, P. & Vergoni, M., 2013. "HVAC systems testing and check: A simplified model to predict thermal comfort conditions in moderate environments," Applied Energy, Elsevier, vol. 104(C), pages 117-127.
    13. Zomorodian, Zahra Sadat & Tahsildoost, Mohammad & Hafezi, Mohammadreza, 2016. "Thermal comfort in educational buildings: A review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 895-906.
    14. Mirrahimi, Seyedehzahra & Mohamed, Mohd Farid & Haw, Lim Chin & Ibrahim, Nik Lukman Nik & Yusoff, Wardah Fatimah Mohammad & Aflaki, Ardalan, 2016. "The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1508-1519.
    15. Ning, Haoran & Wang, Zhaojun & Ji, Yuchen, 2016. "Thermal history and adaptation: Does a long-term indoor thermal exposure impact human thermal adaptability?," Applied Energy, Elsevier, vol. 183(C), pages 22-30.
    16. Ferenc Kalmár & Tünde Kalmár, 2020. "Thermal Comfort Aspects of Solar Gains during the Heating Season," Energies, MDPI, vol. 13(7), pages 1-15, April.
    17. Laura J. Elstub & Shimra J. Fine & Karl E. Zelik, 2021. "Exoskeletons and Exosuits Could Benefit from Mode-Switching Body Interfaces That Loosen/Tighten to Improve Thermal Comfort," IJERPH, MDPI, vol. 18(24), pages 1-12, December.
    18. Halil Alibaba, 2016. "Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate," Sustainability, MDPI, vol. 8(2), pages 1-21, February.
    19. Ribeiro, Thatiana Jessica da Silva & Mady, Carlos Eduardo Keutenedjian, 2022. "Comparison among exergy analysis methods applied to a human body thermal model," Energy, Elsevier, vol. 239(PE).
    20. Bruno Malet-Damour & Jean-Pierre Habas & Dimitri Bigot, 2023. "Is Loose-Fill Plastic Waste an Opportunity for Thermal Insulation in Cold and Humid Tropical Climates?," Sustainability, MDPI, vol. 15(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:114:y:2014:i:c:p:687-699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.