IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p53-d1009789.html
   My bibliography  Save this article

Energy Policy for Agrivoltaics in Alberta Canada

Author

Listed:
  • Uzair Jamil

    (Department of Mechanical and Materials Engineering, Western University, London, ON N6A 5B9, Canada)

  • Joshua M. Pearce

    (Department of Electrical & Computer Engineering, Western University, London, ON N6A 5B9, Canada
    Ivey Business School, Western University, London, ON N6G 0N1, Canada)

Abstract

As Alberta increases conventional solar power generation, land-use conflicts with agriculture increase. A solution that enables low-carbon electricity generation and continued (in some cases, increased) agricultural output is the co-locating of solar photovoltaics (PV) and agriculture: agrivoltaics. This review analyzes policies that impact the growth of agrivoltaics in Alberta. Solar PV-based electricity generation is governed by three regulations based on system capacity. In addition, agrivoltaics falls under various legislations, frameworks, and guidelines for land utilization. These include the Land Use Framework, Alberta Land Stewardship Act, Municipal Government Act, Special Areas Disposition, Bill 22, and other policies, which are reviewed in the agrivoltaics context. Several policies are recommended to support the rapid deployment of agrivoltaics. Openly accessible agrivoltaics research will help optimize agrivoltaic systems for the region, and can be coupled with public education to galvanize social acceptability of large-scale PV deployment. Clearly defining and categorizing agrivoltaics technology, developing agrivoltaics standards, making agrivoltaics technology-friendly regulations and frameworks, and developing programs and policies to incentivize agrivoltaics deployment over conventional PV will all accelerate the technology’s deployment. Through these measures, Alberta can achieve conservation and sustainability in the food and energy sectors while simultaneously addressing their renewable energy and climate-related goals.

Suggested Citation

  • Uzair Jamil & Joshua M. Pearce, 2022. "Energy Policy for Agrivoltaics in Alberta Canada," Energies, MDPI, vol. 16(1), pages 1-31, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:53-:d:1009789
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/53/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/53/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krishnan, R. & Pearce, J.M., 2018. "Economic impact of substituting solar photovoltaic electric production for tobacco farming," Land Use Policy, Elsevier, vol. 72(C), pages 503-509.
    2. Valle, B. & Simonneau, T. & Sourd, F. & Pechier, P. & Hamard, P. & Frisson, T. & Ryckewaert, M. & Christophe, A., 2017. "Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops," Applied Energy, Elsevier, vol. 206(C), pages 1495-1507.
    3. Bhandari, Khagendra P. & Collier, Jennifer M. & Ellingson, Randy J. & Apul, Defne S., 2015. "Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 133-141.
    4. Elamri, Y. & Cheviron, B. & Lopez, J.-M. & Dejean, C. & Belaud, G., 2018. "Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces," Agricultural Water Management, Elsevier, vol. 208(C), pages 440-453.
    5. Martinez, Stephen W. & Hand, Michael S. & Da Pra, Michelle & Pollack, Susan L. & Ralston, Katherine L. & Smith, Travis A. & Vogel, Stephen J. & Clark, Shellye & Lohr, Luanne & Low, Sarah A. & Newman, , 2010. "Local Food Systems: Concepts, Impacts, and Issues," Economic Research Report 96635, United States Department of Agriculture, Economic Research Service.
      • Martinez, Steve & Hand, Michael & Da Pra, Michelle & Pollack, Susan & Ralston, Katherine & Smith, Travis & Vogel, Stephen & Clarke, Shellye & Lohr, Luanne & Low, Sarah & Newman, Constance, 2010. "Local food systems: concepts, impacts, and issues," MPRA Paper 24313, University Library of Munich, Germany.
    6. Mohammad Al-Saidi & Nisreen Lahham, 2019. "Solar energy farming as a development innovation for vulnerable water basins," Development in Practice, Taylor & Francis Journals, vol. 29(5), pages 619-634, July.
    7. Nonhebel, Sanderine, 2005. "Renewable energy and food supply: will there be enough land?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 191-201, April.
    8. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    9. Nuria Martín-Chivelet & Cecilia Guillén & Juan Francisco Trigo & José Herrero & Juan José Pérez & Faustino Chenlo, 2018. "Comparative Performance of Semi-Transparent PV Modules and Electrochromic Windows for Improving Energy Efficiency in Buildings," Energies, MDPI, vol. 11(6), pages 1-12, June.
    10. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    11. Dias, Luís & Gouveia, João Pedro & Lourenço, Paulo & Seixas, Júlia, 2019. "Interplay between the potential of photovoltaic systems and agricultural land use," Land Use Policy, Elsevier, vol. 81(C), pages 725-735.
    12. Zhi Li & Akira Yano & Marco Cossu & Hidekazu Yoshioka & Ichiro Kita & Yasuomi Ibaraki, 2018. "Electrical Energy Producing Greenhouse Shading System with a Semi-Transparent Photovoltaic Blind Based on Micro-Spherical Solar Cells," Energies, MDPI, vol. 11(7), pages 1-23, June.
    13. Ravi, Sujith & Macknick, Jordan & Lobell, David & Field, Christopher & Ganesan, Karthik & Jain, Rishabh & Elchinger, Michael & Stoltenberg, Blaise, 2016. "Colocation opportunities for large solar infrastructures and agriculture in drylands," Applied Energy, Elsevier, vol. 165(C), pages 383-392.
    14. Denholm, Paul & Margolis, Robert M., 2008. "Land-use requirements and the per-capita solar footprint for photovoltaic generation in the United States," Energy Policy, Elsevier, vol. 36(9), pages 3531-3543, September.
    15. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.
    16. Palmer-Wilson, Kevin & Donald, James & Robertson, Bryson & Lyseng, Benjamin & Keller, Victor & Fowler, McKenzie & Wade, Cameron & Scholtysik, Sven & Wild, Peter & Rowe, Andrew, 2019. "Impact of land requirements on electricity system decarbonisation pathways," Energy Policy, Elsevier, vol. 129(C), pages 193-205.
    17. Benjamin K. Sovacool, 2009. "Exploring and Contextualizing Public Opposition to Renewable Electricity in the United States," Sustainability, MDPI, vol. 1(3), pages 1-20, September.
    18. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    19. Kwan, Calvin Lee, 2012. "Influence of local environmental, social, economic and political variables on the spatial distribution of residential solar PV arrays across the United States," Energy Policy, Elsevier, vol. 47(C), pages 332-344.
    20. Crago, Christine L. & Koegler, Eric, 2018. "Drivers of growth in commercial-scale solar PV capacity," Energy Policy, Elsevier, vol. 120(C), pages 481-491.
    21. El-Bashir, S.M. & Al-Harbi, F.F. & Elburaih, H. & Al-Faifi, F. & Yahia, I.S., 2016. "Red photoluminescent PMMA nanohybrid films for modifying the spectral distribution of solar radiation inside greenhouses," Renewable Energy, Elsevier, vol. 85(C), pages 928-938.
    22. Fasihi, Mahdi & Weiss, Robert & Savolainen, Jouni & Breyer, Christian, 2021. "Global potential of green ammonia based on hybrid PV-wind power plants," Applied Energy, Elsevier, vol. 294(C).
    23. Joshua M. Pearce, 2022. "Agrivoltaics in Ontario Canada: Promise and Policy," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    24. Pal, Pikaso & Mukherjee, V., 2021. "Off-grid solar photovoltaic/hydrogen fuel cell system for renewable energy generation: An investigation based on techno-economic feasibility assessment for the application of end-user load demand in N," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    25. Trommsdorff, Max & Kang, Jinsuk & Reise, Christian & Schindele, Stephan & Bopp, Georg & Ehmann, Andrea & Weselek, Axel & Högy, Petra & Obergfell, Tabea, 2021. "Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    26. Alafita, T. & Pearce, J.M., 2014. "Securitization of residential solar photovoltaic assets: Costs, risks and uncertainty," Energy Policy, Elsevier, vol. 67(C), pages 488-498.
    27. World Health Organization, 2021. "WHO report on the global tobacco epidemic 2021: addressing new and emerging products," University of California at San Francisco, Center for Tobacco Control Research and Education qt0014f8hx, Center for Tobacco Control Research and Education, UC San Francisco.
    28. Li, Zhi & Yano, Akira & Yoshioka, Hidekazu, 2020. "Feasibility study of a blind-type photovoltaic roof-shade system designed for simultaneous production of crops and electricity in a greenhouse," Applied Energy, Elsevier, vol. 279(C).
    29. Katsikogiannis, Odysseas Alexandros & Ziar, Hesan & Isabella, Olindo, 2022. "Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach," Applied Energy, Elsevier, vol. 309(C).
    30. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua M. Pearce, 2022. "Agrivoltaics in Ontario Canada: Promise and Policy," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    2. Uzair Jamil & Abigail Bonnington & Joshua M. Pearce, 2023. "The Agrivoltaic Potential of Canada," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    3. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    5. Chelsea Schelly & Don Lee & Elise Matz & Joshua M. Pearce, 2021. "Applying a Relationally and Socially Embedded Decision Framework to Solar Photovoltaic Adoption: A Conceptual Exploration," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    6. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    7. Pascaris1, Alexis S. & Schelly, Chelsea & Rouleau, Mark & Pearce, Joshua M., 2021. "Do Agrivoltaics Improve Public Support for Solar Photovoltaic Development? Survey Says: Yes!," SocArXiv efasx, Center for Open Science.
    8. Cuppari, Rosa I. & Higgins, Chad W. & Characklis, Gregory W., 2021. "Agrivoltaics and weather risk: A diversification strategy for landowners," Applied Energy, Elsevier, vol. 291(C).
    9. Lee, Sangik & Lee, Jong-hyuk & Jeong, Youngjoon & Kim, Dongsu & Seo, Byung-hun & Seo, Ye-jin & Kim, Taejin & Choi, Won, 2023. "Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment," Applied Energy, Elsevier, vol. 341(C).
    10. Edouard, Sylvain & Combes, Didier & Van Iseghem, Mike & Ng Wing Tin, Marion & Escobar-Gutiérrez, Abraham J., 2023. "Increasing land productivity with agriphotovoltaics: Application to an alfalfa field," Applied Energy, Elsevier, vol. 329(C).
    11. Trommsdorff, Max & Kang, Jinsuk & Reise, Christian & Schindele, Stephan & Bopp, Georg & Ehmann, Andrea & Weselek, Axel & Högy, Petra & Obergfell, Tabea, 2021. "Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    12. Daisuke Yajima & Teruya Toyoda & Masaaki Kirimura & Kenji Araki & Yasuyuki Ota & Kensuke Nishioka, 2023. "Estimation Model of Agrivoltaic Systems Maximizing for Both Photovoltaic Electricity Generation and Agricultural Production," Energies, MDPI, vol. 16(7), pages 1-16, April.
    13. Junedi, M.M. & Ludin, N.A. & Hamid, N.H. & Kathleen, P.R. & Hasila, J. & Ahmad Affandi, N.A., 2022. "Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Feuerbacher, Arndt & Herrmann, Tristan & Neuenfeldt, Sebastian & Laub, Moritz & Gocht, Alexander, 2022. "Estimating the economics and adoption potential of agrivoltaics in Germany using a farm-level bottom-up approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Alexander V. Klokov & Egor Yu. Loktionov & Yuri V. Loktionov & Vladimir A. Panchenko & Elizaveta S. Sharaborova, 2023. "A Mini-Review of Current Activities and Future Trends in Agrivoltaics," Energies, MDPI, vol. 16(7), pages 1-18, March.
    16. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    17. Grazia Disciglio & Laura Frabboni & Annalisa Tarantino & Antonio Stasi, 2023. "Association between Dynamic Agrivoltaic System and Cultivation: Viability, Yields and Qualitative Assessment of Medical Plants," Sustainability, MDPI, vol. 15(23), pages 1-13, November.
    18. Fernández, Eduardo F. & Villar-Fernández, Antonio & Montes-Romero, Jesús & Ruiz-Torres, Laura & Rodrigo, Pedro M. & Manzaneda, Antonio J. & Almonacid, Florencia, 2022. "Global energy assessment of the potential of photovoltaics for greenhouse farming," Applied Energy, Elsevier, vol. 309(C).
    19. Sojib Ahmed, M. & Rezwan Khan, M. & Haque, Anisul & Ryyan Khan, M., 2022. "Agrivoltaics analysis in a techno-economic framework: Understanding why agrivoltaics on rice will always be profitable," Applied Energy, Elsevier, vol. 323(C).
    20. Gonocruz, Ruth Anne Tanlioco & Yoshida, Yoshikuni & Ozawa, Akito & Aguirre, Rodolfo A. & Maguindayao, Edward Joseph H., 2023. "Impacts of agrivoltaics in rural electrification and decarbonization in the Philippines," Applied Energy, Elsevier, vol. 350(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:53-:d:1009789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.