IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p263-d1015813.html
   My bibliography  Save this article

Solar-DG and DSTATCOM Concurrent Planning in Reconfigured Distribution System Using APSO and GWO-PSO Based on Novel Objective Function

Author

Listed:
  • Bikash Kumar Saw

    (Department of Electrical Engineering, National Institute of Technology, Durgapur 713209, India)

  • Aashish Kumar Bohre

    (Department of Electrical Engineering, National Institute of Technology, Durgapur 713209, India)

  • Jalpa H. Jobanputra

    (Electrical Engineering Department, Shroff S R Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar 393135, India)

  • Mohan Lal Kolhe

    (Faculty of Engineering and Science, University of Agder, 4604 Kristiansand, Norway)

Abstract

The concurrent planning of multiple Distributed Generations (DGs), consisting of solar-DG and DSTATCOM with reconfiguration in IEEE 33 and 69 bus Radial Distribution Network (RDN), using Adaptive Particle Swarm Optimization (APSO) and hybrid Grey Wolf-Particle Swarm Optimization (GWO-PSO), is reported in this paper. For this planning, a novel multiple objective-based fitness-function ( M O F F ) is proposed based on various performance parameters of the system, such as power losses (both active, as well as reactive loss), system voltage profile, short circuit level of line current (SCLL Current ), and system reliability. The economic perspective of the system has also been considered based on the various costs, such as fix, loss, and Energy Not Supplied (ENS) cost. Two case studies have been presented on IEEE 33 and 69 bus RDN to validate the efficacy of the proposed methodology. The results analysis of the system shows that better performance can be achieved with the proposed technique for 33 and 69 bus RDN, using GWO-PSO rather than APSO. From this results analysis, a vital point is noticed that the SCLL Current is reduced, which causes the short-circuit (fault) tolerance capacity (level) of the RDN to become enhanced. Finally, the comparative analysis of the obtained results, using the proposed method with other methods that exist in different literature, reveals that the proposed method has performed better from a techno-economic prospective.

Suggested Citation

  • Bikash Kumar Saw & Aashish Kumar Bohre & Jalpa H. Jobanputra & Mohan Lal Kolhe, 2022. "Solar-DG and DSTATCOM Concurrent Planning in Reconfigured Distribution System Using APSO and GWO-PSO Based on Novel Objective Function," Energies, MDPI, vol. 16(1), pages 1-38, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:263-:d:1015813
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/263/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/263/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olatomiwa, Lanre & Mekhilef, Saad & Huda, A.S.N. & Ohunakin, Olayinka S., 2015. "Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria," Renewable Energy, Elsevier, vol. 83(C), pages 435-446.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brahma, Antara & Saikia, Kangkana & Hiloidhari, Moonmoon & Baruah, D.C., 2016. "GIS based planning of a biomethanation power plant in Assam, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 596-608.
    2. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    3. Michael O. Ukoba & Ogheneruona E. Diemuodeke & Mohammed Alghassab & Henry I. Njoku & Muhammad Imran & Zafar A. Khan, 2020. "Composite Multi-Criteria Decision Analysis for Optimization of Hybrid Renewable Energy Systems for Geopolitical Zones in Nigeria," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    4. Salmon, Claire & Tanguy, Jeremy, 2016. "Rural Electrification and Household Labor Supply: Evidence from Nigeria," World Development, Elsevier, vol. 82(C), pages 48-68.
    5. Ugwoke, B. & Gershon, O. & Becchio, C. & Corgnati, S.P. & Leone, P., 2020. "A review of Nigerian energy access studies: The story told so far," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    6. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    7. Li, Chong & Zhou, Dequn & Wang, Hui & Lu, Yuzheng & Li, Dongdong, 2020. "Techno-economic performance study of stand-alone wind/diesel/battery hybrid system with different battery technologies in the cold region of China," Energy, Elsevier, vol. 192(C).
    8. Molyneaux, Lynette & Wagner, Liam & Foster, John, 2016. "Rural electrification in India: Galilee Basin coal versus decentralised renewable energy micro grids," Renewable Energy, Elsevier, vol. 89(C), pages 422-436.
    9. Juanpera, M. & Ferrer-Martí, L. & Pastor, R., 2022. "Multi-stage optimization of rural electrification planning at regional level considering multiple criteria. Case study in Nigeria," Applied Energy, Elsevier, vol. 314(C).
    10. Okoye, Chiemeka Onyeka & Taylan, Onur, 2017. "Performance analysis of a solar chimney power plant for rural areas in Nigeria," Renewable Energy, Elsevier, vol. 104(C), pages 96-108.
    11. Suresh Vendoti & M. Muralidhar & R. Kiranmayi, 2021. "Techno-economic analysis of off-grid solar/wind/biogas/biomass/fuel cell/battery system for electrification in a cluster of villages by HOMER software," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 351-372, January.
    12. Vishnupriyan, J. & Manoharan, P.S., 2018. "Multi-criteria decision analysis for renewable energy integration: A southern India focus," Renewable Energy, Elsevier, vol. 121(C), pages 474-488.
    13. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    14. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    15. Samrat Chakraborty & Debottam Mukherjee & Pabitra Kumar Guchhait & Somudeep Bhattacharjee & Almoataz Youssef Abdelaziz & Adel El-Shahat, 2023. "Optimum Design of a Renewable-Based Integrated Energy System in Autonomous Mode for a Remote Hilly Location in Northeastern India," Energies, MDPI, vol. 16(4), pages 1-30, February.
    16. Nicu Bizon & Phatiphat Thounthong, 2020. "Energy Efficiency and Fuel Economy of a Fuel Cell/Renewable Energy Sources Hybrid Power System with the Load-Following Control of the Fueling Regulators," Mathematics, MDPI, vol. 8(2), pages 1-22, January.
    17. Agbetuyi Ayoade Felix & Elizabeth Oses Amuta & Orovwode Hope Evwieroghene & Abdulkareem Ademola & Amoo Racheal & Agbetuyi Oluranti Adegoke, 2023. "Feasibility and Economic Assessment of a Hybrid Energy System for Bakori Area, Katsina in Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 16-21, July.
    18. Ibrahim Alsaidan & Mohd Bilal & Muhannad Alaraj & Mohammad Rizwan & Fahad M. Almasoudi, 2023. "A Novel EA-Based Techno–Economic Analysis of Charging System for Electric Vehicles: A Case Study of Qassim Region, Saudi Arabia," Mathematics, MDPI, vol. 11(9), pages 1-31, April.
    19. Muzan Williams Ijeoma & Hao Chen & Michael Carbajales-Dale & Rahimat Oyiza Yakubu, 2023. "Techno-Economic Assessment of the Viability of Commercial Solar PV System in Port Harcourt, Rivers State, Nigeria," Energies, MDPI, vol. 16(19), pages 1-25, September.
    20. Yilmaz, Saban & Dincer, Furkan, 2017. "Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 344-352.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:263-:d:1015813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.