IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3369-d809046.html
   My bibliography  Save this article

Thermo-Economic Performance Evaluation of a Conical Solar Concentrating System Using Coil-Based Absorber

Author

Listed:
  • Haedr Abdalha Mahmood Alsalame

    (Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea)

  • Muhammad Imtiaz Hussain

    (Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea
    Green Energy Technology Research Center, Kongju National University, Cheonan 31080, Korea)

  • Waseem Amjad

    (Department of Energy Systems Engineering, University of Agriculture, Faisalabad 38000, Pakistan)

  • Asma Ali

    (Department of Agricultural and Resource Economics, Kangwon National University, Chuncheon 24341, Korea)

  • Gwi Hyun Lee

    (Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea)

Abstract

Pollution and the increase in greenhouse gas (GHG) emissions have long been linked to the world’s increasing need for fossil fuels to generate energy. Every day, the energy consumption is increasing; therefore, it is important to improve technologies that use renewable energy sources. With the abundant availability of sustainable energy, solar power is becoming a necessity. However, solar energy has a low energy density and therefore requires a large installation area, which requires heat collection and heat storage technology. Much research is now being done on the conical solar systems to improve efficiency including calculating an optimal cone angle, finding the best flow ratio and the best absorber design, etc. Therefore, in this study, thermal performance of a conical solar collector (CSC) was assessed with a new design of concentric tube absorber (addition of a coil) and compared to the existing circular tube absorber. It was found that 6 L/min flow rate of heating medium (distilled water and CuO nanofluid) gave lower payback period and higher solar fraction of the system in both cases of absorber tube, i.e., without coil and with coil. However, comparatively, thermal efficiency of CSC with coil-based absorber was almost 10–12% higher than conventional system (without coil) regardless of type of heating medium used.

Suggested Citation

  • Haedr Abdalha Mahmood Alsalame & Muhammad Imtiaz Hussain & Waseem Amjad & Asma Ali & Gwi Hyun Lee, 2022. "Thermo-Economic Performance Evaluation of a Conical Solar Concentrating System Using Coil-Based Absorber," Energies, MDPI, vol. 15(9), pages 1-12, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3369-:d:809046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3369/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3369/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hasanuzzaman, M. & Rahim, N.A. & Hosenuzzaman, M. & Saidur, R. & Mahbubul, I.M. & Rashid, M.M., 2012. "Energy savings in the combustion based process heating in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4527-4536.
    2. Imtiaz Hussain, M. & Lee, Gwi Hyun & Kim, Jun-Tae, 2017. "Experimental validation of mathematical models of identical aluminum and stainless steel engineered conical solar collectors," Renewable Energy, Elsevier, vol. 112(C), pages 44-52.
    3. Imtiaz Hussain, M. & Ali, Asma & Lee, Gwi Hyun, 2015. "Performance and economic analyses of linear and spot Fresnel lens solar collectors used for greenhouse heating in South Korea," Energy, Elsevier, vol. 90(P2), pages 1522-1531.
    4. Hasanuzzaman, M. & Rahim, N.A. & Saidur, R. & Kazi, S.N., 2011. "Energy savings and emissions reductions for rewinding and replacement of industrial motor," Energy, Elsevier, vol. 36(1), pages 233-240.
    5. Imtiaz Hussain, M. & Lee, Gwi Hyun, 2017. "Numerical and experimental heat transfer analyses of a novel concentric tube absorber under non-uniform solar flux condition," Renewable Energy, Elsevier, vol. 103(C), pages 49-57.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    2. M. Hasanuzzaman & Ummu Salamah Zubir & Nur Iqtiyani Ilham & Hang Seng Che, 2017. "Global electricity demand, generation, grid system, and renewable energy polices: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(3), May.
    3. Wang, Cheng-Long & Gong, Jing-Hu & Yan, Jia-Jie & Zhou, Yuan & Fan, Duo-Wang, 2019. "Theoretical and experimental study on the uniformity of reflective high concentration photovoltaic system with light funnel," Renewable Energy, Elsevier, vol. 133(C), pages 893-900.
    4. Hosenuzzaman, M. & Rahim, N.A. & Selvaraj, J. & Hasanuzzaman, M. & Malek, A.B.M.A. & Nahar, A., 2015. "Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 284-297.
    5. Habib, Mohammad Ahsan & Hasanuzzaman, M. & Hosenuzzaman, M. & Salman, Asif & Mehadi, Md Riyad, 2016. "Energy consumption, energy saving and emission reduction of a garment industrial building in Bangladesh," Energy, Elsevier, vol. 112(C), pages 91-100.
    6. Ahmed, Ferdous & Al Amin, Abul Quasem & Hasanuzzaman, M. & Saidur, R., 2013. "Alternative energy resources in Bangladesh and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 698-707.
    7. Bortoni, Edson C. & Magalhães, Leonardo P. & Nogueira, Luiz A.H. & Bajay, Sérgio V. & Cassula, Agnelo M., 2020. "An assessment of energy efficient motors application by scenarios evaluation," Energy Policy, Elsevier, vol. 140(C).
    8. Muthu Kumaran Gunasegaran & Md Hasanuzzaman & ChiaKwang Tan & Ab Halim Abu Bakar & Vignes Ponniah, 2022. "Energy Analysis, Building Energy Index and Energy Management Strategies for Fast-Food Restaurants in Malaysia," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    9. Sauer, Ildo L. & Tatizawa, Hédio & Salotti, Francisco A.M. & Mercedes, Sonia S., 2015. "A comparative assessment of Brazilian electric motors performance with minimum efficiency standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 308-318.
    10. Clara Inés Pardo Martínez, 2009. "Energy efficiency developments in the manufacturing industries of Germany and Colombia, 1998-2005," Serie de Documentos en Economía y Violencia 6144, Centro de Investigaciones en Violencia, Instituciones y Desarrollo Económico (VIDE).
    11. Santhanam, S. & Heddrich, M.P. & Riedel, M. & Friedrich, K.A., 2017. "Theoretical and experimental study of Reversible Solid Oxide Cell (r-SOC) systems for energy storage," Energy, Elsevier, vol. 141(C), pages 202-214.
    12. Imtiaz Hussain, M. & Lee, Gwi Hyun & Kim, Jun-Tae, 2017. "Experimental validation of mathematical models of identical aluminum and stainless steel engineered conical solar collectors," Renewable Energy, Elsevier, vol. 112(C), pages 44-52.
    13. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    14. M. Imtiaz Hussain & Jun-Tae Kim, 2020. "Performance Evaluation of Photovoltaic/Thermal (PV/T) System Using Different Design Configurations," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    15. Alexandros Vouros & Emmanouil Mathioulakis & Elias Papanicolaou & Vassilis Belessiotis, 2023. "Computational Modeling of a Small-Scale, Solar Concentrating Device Based on a Fresnel-Lens Collector and a Flat Plate Receiver with Cylindrical Channels," Energies, MDPI, vol. 16(2), pages 1-21, January.
    16. Du Plessis, Gideon Edgar & Liebenberg, Leon & Mathews, Edward Henry, 2013. "The use of variable speed drives for cost-effective energy savings in South African mine cooling systems," Applied Energy, Elsevier, vol. 111(C), pages 16-27.
    17. Thirugnanasambandam, M. & Hasanuzzaman, M. & Saidur, R. & Ali, M.B. & Rajakarunakaran, S. & Devaraj, D. & Rahim, N.A., 2011. "Analysis of electrical motors load factors and energy savings in an Indian cement industry," Energy, Elsevier, vol. 36(7), pages 4307-4314.
    18. El-Kharashi, Eyhab & El-Dessouki, Maher, 2014. "Coupling induction motors to improve the energy conversion process during balanced and unbalanced operation," Energy, Elsevier, vol. 65(C), pages 511-516.
    19. Frikha, Sobhi & Driss, Zied & Hagui, Mohamed Aymen, 2015. "Computational study of the diffuser angle effect in the design of a waste heat recovery system for oil field cabins," Energy, Elsevier, vol. 84(C), pages 219-238.
    20. Raja Singh, R. & Chelliah, Thanga Raj, 2017. "Enforcement of cost-effective energy conservation on single-fed asynchronous machine using a novel switching strategy," Energy, Elsevier, vol. 126(C), pages 179-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3369-:d:809046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.